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Transient Dynamics of a Superconducting Nonlinear Oscillator
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We investigate the transient dynamics of a lumped-element oscillator based on a dc superconducting
quantum interference device (SQUID). The SQUID is shunted with a capacitor, forming a nonlinear
oscillator with a resonance frequency in the range of several gigahertz. The resonance frequency is varied
by tuning the Josephson inductance of the SQUID with on-chip flux lines. We report measurements of
decaying oscillations in the time domain following a brief excitation with a microwave pulse. The
nonlinearity of the SQUID oscillator is probed by observing the ringdown response for different excitation
amplitudes while the SQUID potential is varied by adjusting the flux bias. Simulations are performed on a
model circuit by numerically solving the corresponding Langevin equations incorporating the SQUID
potential at the experimental temperature and using parameters obtained from separate measurements
characterizing the SQUID oscillator. Simulations are in good agreement with the experimental observations
of the ringdowns as a function of applied magnetic flux and pulse amplitude. We observe a crossover
between the occurrence of ringdowns close to resonance and adiabatic following at a larger detuning from
the resonance. We also discuss the occurrence of phase jumps at a large amplitude drive. Finally, we briefly
outline prospects for a readout scheme for superconducting flux qubits based on the discrimination between

ringdown signals for different levels of magnetic flux coupled to the SQUID.
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I. INTRODUCTION

Superconducting circuits composed of Josephson junc-
tions have been the subject of intense research for the past
few decades for their importance in understanding the
fundamental aspects of quantum mechanics as well as for
their potential application towards quantum-information
processing and computing [1,2]. These micrometer-sized
devices are shown to exhibit macroscopic quantum tunnel-
ing [3,4], quantized energy levels [5], and superposition of
states in a quantum bit (qubit) [6—8]. A central application
of Josephson devices, classical or quantum [9], is meas-
urement. There have been many advances in utilizing
Josephson devices such as a dc superconducting quantum
interference device (SQUID) for qubit readout [10-13]. In
these experiments, the SQUID forms part of a resonant
oscillator circuit that is coupled to a qubit. Some of these
Josephson devices configured as amplifiers approach the
quantum limit in noise performance [14-23]. All of these
applications of Josephson junctions depend at some level
on the nonlinearity of the junction response.

In this paper, we investigate the temporal dynamics of a
nonlinear SQUID resonant circuit. Studies of nonlinear
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oscillator dynamics under continuous excitation have been
done previously [15,24-27], and, in fact, many types of
superconducting qubits, such as the transmon [28] or the
phase qubit [8], are nonlinear oscillators that are typically
driven with resonant pulses. However, we are not aware of
any experimental or theoretical work to date on the
transient dynamics of nonlinear oscillators under a pulsed
excitation in the time domain. Here we present time-
domain measurements of the decaying voltage oscillations
from the SQUID oscillator after a brief excitation. The
SQUID potential, and hence the resonance frequency, can
be tuned by changing either the bias flux or the bias current;
here we focus on the variation with respect to flux, while no
dc bias current is applied.

The paper is organized as follows. We start with a brief
theoretical background of SQUID oscillators in Sec. II. In
Sec. III, we describe the fabrication of a lumped-element
SQUID oscillator and experimental measurement scheme.
Measurements in the frequency and time domains are
presented in Sec. IV. A model of the electrical circuit is
presented in Sec. V, which is then used to derive the
equations of motion of the full system. These equations are
then reduced, accounting for the physical parameters used,
and after incorporating thermal effects are solved numeri-
cally to obtain the free evolution of the system for different
conditions corresponding to the experiment. The simulated
ringdowns in the time domain as a function of the flux bias
and pulse amplitude are in good agreement with the
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observations, as is shown in Sec. VI. Finally, in Sec. VII, a
scheme for using ringdown oscillations of a SQUID
oscillator to read out a flux qubit is briefly discussed,
followed by our conclusions in Sec. VIII.

II. THEORETICAL BACKGROUND

At the heart of all these investigations is the Josephson
junction, which behaves as a nonlinear LC oscillator
characterized by the plasma resonance [9,29] w, =

\/2xly/®yC;, where I, is the critical current of the
Josephson junction in parallel with its self-capacitance
C; and &)= h/2e is the magnetic-flux quantum. For
typical parameters of the fabricated junctions, ®, /27 is
of the order of 100 GHz. When shunted by a large external
capacitance, however, the resonance frequency can be
lowered to a few gigahertz for ease of performing experi-
ments with an oscillator for coupling to a qubit or to
fabricate a qubit itself.

In this paper, we consider a dc SQUID, which has two
identical junctions in parallel, symmetrically placed on a
superconducting loop. The dynamics of such a SQUID,
as shown in a circuit schematic in Fig. 1, can be described
by a two-dimensional anharmonic potential U(¢,,¢_)
given by [9,30]

U
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FIG. 1. (a) Circuit schematic showing the input and output
coupling capacitors and the SQUID oscillator. (b) Optical image
of the fabricated circuit with an enlarged view of the SQUID with
on-chip flux lines.

where E; = I,®,/2x is the Josephson coupling energy
normalizing U, L;, = ®,/2xl, is the Josephson induct-
ance of each junction, = 2zl,L,/®y = L,/L,, is the
screening parameter of the SQUID with geometric loop
inductance L, i, = I,/21 is the bias current normalized
by the critical current, and f; = ®,/®, is the normalized
applied flux. ¢, = (¢4 +¢p)/2 and ¢_ = (95 —¢p)/2
are the two independent degrees of freedom with ¢, and ¢
corresponding to the phase differences across each of the
two Josephson junctions [see Fig. 5(a) and the Appendix
for a more complete description of the SQUID potential
energy and the rest of the circuit]. The sum of the phases
across the junctions (external mode), ¢, , couples to the
current through the SQUID, while the difference of the
phases (internal mode), ¢_, couples to the magnetic flux
applied to the SQUID. The oscillator can be resonantly
excited by applying a short alternating-current pulse to the
SQUID. The pulse perturbs the potential minimum of the
SQUID, giving rise to oscillations of the phase particle
about the minimum that decay at the characteristic fre-
quency of the oscillator. The ringdown motion is mediated
via the external mode of the oscillator and can be detected
as a voltage oscillation across the SQUID.

III. EXPERIMENTAL SETUP

We investigate a lumped-element microwave oscillator
circuit consisting of a dc SQUID shunted by a capacitor
formed from superconducting layers. A circuit schematic
and an optical micrograph of the device are shown in Fig. 1.
A microwave feed line with on-chip capacitors couples
signals into and out of the oscillator. Adjusting the bias flux
®, as shown in the figure modulates the Josephson
inductance of the SQUID, thus varying the resonance
frequency of the SQUID oscillator.

Our devices are fabricated in a five-layer process on an
oxidized Si wafer. The initial four layers are patterned using
photolithography, while the final layer, consisting of the
SQUID junctions, is patterned by electron-beam lithogra-
phy. The ground plane is formed from a 120-nm-thick Al
layer. The dielectric layer on top of the ground plane is a
150-nm-thick SiO, film deposited by plasma-enhanced
chemical vapor deposition (PECVD). The SiO, forms the
dielectric for the parallel-plate shunting capacitor C, and
the output coupling capacitor C,,. The input coupling
capacitor C;, (Fig. 1) is interdigitated and is formed along
with the microwave feed line and the top layer of the
parallel-plate capacitors in a 200-nm-thick Al film. The
estimated value of C;,, based on the fabricated finger
dimensions and using the effective dielectric constant of a
microstrip line in the standard expression for the interdigi-
tated capacitor [31,32], is 0.15 pF. The parallel-plate
capacitors C,,, and C, are designed to be 1.3 and
6.8 pF, respectively, based on geometry and film param-
eters, although there could be significant variation because
of our uncertainty in the dielectric properties of the SiO,
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film. Vias are etched through the SiO, layer so that the bias
lines and one end of the SQUID contact the ground plane.
The SQUID loop is formed so that it is coupled symmet-
rically between the top and bottom plates of the shunt
capacitor [Fig. 1(b)]. The geometric inductance L, of the
SQUID is calculated to be 43 pH, from FastHenry simulations
of the loop dimension (18 x 18 ym?).

The SQUID junctions are Al-AlO,-Al, formed by a
standard double-angle shadow-evaporation method [33] in
a dedicated electron-beam evaporation chamber equipped
with in situ Ar ion milling to ensure superconducting
contacts between the SQUID layer and the junctions. The
junctions are submicron in size, 530 x 160 nm?, with a
junction capacitance estimated to be 10 fF [34]. The critical
current of each junction is estimated to be 0.4 uA by
measuring the normal state resistance of a nominally
identical junction (684 Q) and based on our previous
characterizations of similar-sized junctions [35]. The reso-
nance frequency of the oscillator is designed to be at 3 GHz.

Measurements are performed in a *He cryostat with a
base temperature of 300 mK. A schematic of the meas-
urement setup is shown in Fig. 2(a). A vector network
analyzer is used to characterize the resonance frequency,
while the transient dynamics are studied using a custom-
built gigahertz digital-to-analog converter (DAC) and a
20-GHz sampling oscilloscope. The sample chip is wire-
bonded to a Cu strip-line microwave board and enclosed in
an aluminum box for magnetic shielding, which is anch-
ored to the cold plate of the *He cryostat. The drive line to
the SQUID oscillator is a lossy stainless-steel semirigid
coaxial cable with attenuators heat sunk at various stages
of the cryostat to minimize noise from room temperature.
The transmitted signals at the output are amplified by two
high electron mobility transistor (HEMT) amplifiers: one at
the 4-K stage of the cryostat and another at room temper-
ature with a combined gain of 70 dB. A 6-dB attenuator is
used at the output of the oscillator for 50  impedance
matching to the input of the cryogenic HEMT amplifier.
The dc biasing lines have copper powder filters anchored at
the 1-K stage of the cryostat. A cryogenic u-metal can
surrounds the vacuum can of the cryostat to shield the
SQUID from external magnetic fields.

Generation of the microwave pulses is achieved by
employing a field-programmable gate array (FPGA)-based
DAC board, which is built based on the designs from
University of California—Santa Barbara [36]. A schematic
of the pulse-generation setup is shown in Fig. 2(b). A
nanosecond waveform is generated digitally from the FPGA
controlled from a computer. The waveform is passed through
Gaussian filters and attenuators before being mixed with a
resonant carrier tone at the in-phase and quadrature mixer,
producing a short microwave burst at the output port of the
mixer. Different amplitudes of the microwave pulse are
achieved by varying the attenuation after the output stage of
the mixer with a step attenuator. A typical room-temperature
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FIG. 2. (a) Schematic of the general measurement setup. The
network analyzer is used to measure the frequency response,
while the pulse-generation setup [expanded in (b)] is used to
measure the ringdowns in the time domain. The two types of
measurement are separate, and, as indicated by dashed lines in
(a), the network analyzer is never connected simultaneously with
the pulse-generation setup. The SQUID oscillator device shown
as a blue box is displayed in Fig. 1.

trace of the microwave bursts generated by this setup and
corresponding time-domain measurement are discussed in
the next section.

IV. MEASUREMENTS OF THE
SQUID OSCILLATOR

The resonance frequency of the SQUID oscillator is
characterized as a function of the applied flux at zero bias
current (1, = 0). A network analyzer supplies a weak signal
with a typical power of —125 dBm to the input of the
SQUID oscillator, and the two-port complex transmission
parameter S, (f) is measured. Although we measure the
complex quantity S»;, the plots that we present show only the
magnitude |S,;|. Multiple |S,;| traces are recorded while
stepping through the flux applied to the SQUID. Figure 3
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FIG. 3. Density plot of |S,;| vs flux and frequency of the
SQUID oscillator as measured from a network analyzer at
—125 dBm power at the input of the SQUID oscillator chip at
300 mK. The dashed line and magenta symbols are from fits to
the SQUID modulation as described in the text. The marker in
black indicates the bias point where the pulsed measurements are
taken.

shows a density plot of the flux-modulated resonance
frequency, periodic in ®,, with the color scaling (darker
blue) region indicating the highest magnitude of |S,;| and
the flux axis scaled in units of ®;. A phenomenological

function of the form f(Vg,) = /a| cos (bV g, + c)|, where
Vo, 15 the flux bias voltage, is used to fit the flux modulation
of the resonance peaks over two periods. The fit parameters
a, b, and ¢ are used to scale the flux axis and fit the
frequency values, so that the fit curve (dashed gray line) can
be plotted on top of the scaled resonance modulation data, as
shown in Fig. 3. The highest frequency at integer ®, occurs
at 3.2 GHz. As expected, for § < 1, the critical current and,
hence, the resonance frequency modulate to near zero. The
observed quality factor of the resonance is approximately 7,
consistent with the estimated value for the output coupling
capacitor and the chip parameters as discussed in Sec. III. In
the following section, we describe a circuit model used to fit
the measured |S,, | traces as a function of the applied flux by
calculating the flux-dependent Josephson inductance based
on the SQUID potential.

A. Transmission through a SQUID oscillator
with asymmetric coupling

A full circuit model is shown in Fig. 5(a), where a
Josephson junction, with parallel capacitance C,, is in
series with a geometric inductance L,/2, symmetrically
positioned on each side of the SQUID. The external shunt
capacitance is labeled as C,, and the internal dissipation in
the SQUID oscillator due, for example, to losses in the

shunt capacitor is depicted as R,. Cj, (Coy) is the input
(output) coupling capacitor, and R, is the characteristic
impedance at the input and output. Neglecting the effects of
the small junction capacitances C; and noting that the dc
bias current I, = 0, at low-amplitude drive, such that the
Josephson junction is nearly linear, we can describe the
SQUID as an effective inductance [37]:

L L
= e ()
2cosp™ 4

L
Here g™ represents the steady-state value of ¢_, which,
for a given value of the applied flux f, we can calculate
numerically by minimizing the potential energy described
by Eq. (1).

Using Eq. (2), we can derive a general expression for S5,
for the effective parallel LCR tank circuit with asymmetric
input and output coupling capacitors. A similar analysis
with symmetric coupling capacitors is performed in
Ref. [38]. We define S,; = 2V, /V;, such that a matched
load of R, = 50 Q corresponds to full transmission, S,; =
1 if the input is connected directly to the output. Then,
taking the notation m||n to represent the parallel impedance
between impedance elements m and n, we arrive at

_ 2Vout — RZ (Ztllzout)

SH1(w, L) = 2 —_ 3
2]( t) Vin Zout (Ztllzout) + Zin ( )

where Z, is the impedance of the parallel LCR tank circuit,

11 -1
Z,=(— iwC, | . 4
: (R[+l.th+la) t> (4)

and Z;, = [R. + (1/iwC;,)] and Zy, = [R, + (1/ioCyy)]
are the input and output impedances, respectively.

Equation (3) is used to fit the measured S, traces at each
flux bias value. First, the measured S,; traces are scaled by
the S,; transmission at a low temperature that is measured
on a separate cooldown using a direct coaxial connection in
place of the oscillator chip. This scaling of measured S,; of
the SQUID oscillator resonance by the effective low-
temperature baseline takes into account the temperature
dependence in the system transmission.

We fit the S,(f) data by fixing Iy = 0.4 uA,
C,, =0.15pF, and f=0.05 and varying C, and R,.
The estimates for the fixed parameters are explained earlier
in Sec. III. Measured S,; curves between £0.3®, are fit
simultaneously with the same fixed parameters, and the
best-fit parameters extracted for C, and R, are 5.1 pF and
265 Q, respectively. C, is in reasonable agreement with our
estimate based on fabrication parameters described in
Sec. ITII. We can extract a loss tangent tan 6 for SiO, from
the equivalent resistance R, at a frequency of 2.5 GHz as
1/wC,R, ~4 x 1072. We note that this is roughly an order
of magnitude larger than what is measured in Ref. [38] for
PECVD-deposited Si0,, and this difference could be due to
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FIG. 4. (a) The input pulse as measured at the top of the
cryostat. The red dots represent the measured data, while the blue
curve is the fit used as the input voltage in the simulations.
(b) Example measured output voltage ringdown from the SQUID
oscillator. Once again, the red dots are obtained directly from
experimental data, while the gray curves in the background are a
subset of the realizations obtained from the simulations of the
circuit. The average of these realizations is shown in black.

variations in deposition conditions and film quality. Also, a
precise determination of the internal loss in our capacitor is
difficult with these measurements, because the large output
coupling strength limits the total oscillator quality factor in
our circuit. The resonance peaks from the circuit model fits
are plotted in Fig. 3 as solid magenta symbols. The
extracted fit parameters C, and R, are further used in the
time-domain simulations described in Sec. V.

Time-domain measurements are performed by applying a
short microwave burst to the SQUID oscillator that is flux
biased at ¢, = 0.3P,, where the resonance frequency, and
hence the ringdown waveforms, have a high flux sensitivity.
An example microwave pulse generated by the gigahertz
DAC is shown in Fig. 4(a) along with the corresponding
theoretical fit used for simulations of the ringdowns
described in Sec. V. The voltage signal at the output of
the SQUID oscillator is shown in Fig. 4(b) for the case when
the SQUID is flux biased at 0.3®,, corresponding to a
resonance frequency of 2.4 GHz. A single experimental
ringdown trace shown in the figure is an average of 1000
traces on the sampling oscilloscope. The carrier frequency of
the microwave burst is 2.4 GHz, to be on resonance when the
SQUID oscillator is biased at 0.3®,,.

The SQUID ringdown response to various amplitudes
of the drive pulse is mapped out by varying the attenuation
on the drive line of the SQUID oscillator. The attenuation
is varied in steps of 1 dB from 0 to 40 dB at the top of
the cryostat. At a setting of 0 dB, that is, with no extra

attenuation other than the fixed attenuation inside the
cryostat, the measured peak amplitude of the burst at the
top of the cryostat is 50 mV. Figure 4(b) displays exper-
imental and theoretical ringdown traces, to be described in
more detail in the next section, from the SQUID oscillator
when the pulse amplitude driving the SQUID is much
smaller than its critical current. The simulated ringdown
is shown as a black line, while the experimental data are in
solid circles.

V. MODEL AND SIMULATIONS

In Sec. IV, where the calibration procedure is described,
and where only small drive amplitudes are considered, we
treat the Josephson junctions as linear elements and hence
the SQUID as a simple effective inductance. In this section,
we consider a more complete picture of the full circuit,
shown in Fig. 5(a), which accounts for the nonlinearity that
is relevant when the applied pulse amplitude is high. In the
Appendix, we first write down the equations of motion of
the full system in terms of five degrees of freedom. Since, in
our case, the shunt capacitance C, is much larger than the
junction capacitances C;, and the Josephson inductance of
the junctions L, is in turn much larger than the geometric
inductance of the SQUID, L, (a condition we can write as
p=L,/L;y < 1), we can eliminate the fastest degrees of
freedom corresponding to nodes 4 and 5 in Fig. 5(a). Doing
so leaves us with a set of differential equations that govern
the behavior of our circuit, of only three degrees of freedom
that treat the SQUID potential energy as one-dimensional.
Furthermore, in the Appendix, we also discuss how, using

(@

C, Cout

FIG. 5. (a) Full circuit model of the SQUID oscillator of Fig. 1
and (b) reduced circuit, valid in the limit of small amplitudes
when the Josephson junction responds linearly. In this regime, the
SQUID is treated as an effective, flux-dependent inductance L,.
In both (a) and (b), the blue numbers represent node labels.
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the thermodynamic dissipation-fluctuation theorem [39],
we can include the effects of noise due to the nonzero
temperature of the system. This stochastic noise turns out
to play a crucial role in reproducing the experimental
behavior when high-amplitude input pulses are considered.
Combining all of these factors results in the effective
equations of motion (in units of current), which can be
written using vector notation as

x

$oCop + PR +
o

ﬁq;Ueff + Ni_’;. + 7dr - O (5)

Here ¢ = (¢1.92.93)", V,=(0/091.0/09,.0/0¢;)",
fdr = (=Vi/R;,0,0)", 7 = (ny,ny,n3)" and ¢y = Py /27.
Each variable ¢; represents the superconducting phase at
node i, with the corresponding voltage defined as ¢q¢;. The
thermal noise in the circuit is modeled by including a

current noise source of strength \/(2kgT/R;)n; in parallel
with each resistor R;, We take kp to represent the
Boltzmann constant, 7 the temperature, and each n; a
normally distributed random variable, which satisfies

(n;(1)) = 0, (6)

(ni(0)n;(7)) = 6(t = 1')5; ;. (7)

In our case, taking Cy = C, + C;, + C,y, the matrices
corresponding to C and R~! can be written as

Cin - Cin 0

C=1-GC, C —Cou .
0 —Couw Cou
£ 00

R'=[0 £ 0], (8)
0 0 L

and N as simply

N = \/2kzTRL. )

Finally, Uy represents the effective (drive-free) potential
energy of our system, which can be decomposed as
Uegs = Uy+ U,. The terms U, and U, represent the
contributions, up to zeroth and first order in f, respectively
(as explained in the Appendix), which result in

0

2E;cos (zfy)sin(p, +xfy) |, (10)
0

-

V(/,UO -

0
VU, = B| —Z[sin(dnf, +20,) +sin(2p,)] |.  (11)
0

Equation (5) forms a set of stochastic differential equations
that we can numerically solve for any ¢,, although each
solution gives us only a single realization. Averaging over
many such realizations (500 in our case) produces a curve
that can be directly compared to the experimental data,
which we do in Sec. VI. In our simulations we choose
the initial conditions that correspond to the system being
at rest, near the potential energy minimum, which we can
express as ¢(0) =0 and »(0) = (0, —f,x,0)T, respec-
tively. We then let the system thermalize by evolving
Eq. (5) without an external drive present (Zh = 6), with
only the thermal noise influencing the evolution. In the
final step, the input pulse shown in Fig. 4(a) is applied,
which in turn excites the system, leading to ringdown
oscillations.

A. Model limitations

In our model, we neglect the internal dissipation asso-
ciated with each Josephson junction. This is reasonable
when the amplitude of the excitation applied to the
junctions is smaller than their critical current, as the
effective resistance shunting each junction in this case is
large enough that its effect on the damping of the junction
phase can be neglected. However, in the instances when the
driving current exceeds the critical current, each junction
experiences a resistance that can be of the order of its
normal-state resistance R, [29], which for the SQUID
oscillator studied here is 684 Q. Nevertheless, in our
circuit, the dominant source of noise is the 50-Q outside
load that couples to the SQUID oscillator via C,, as can be
seen from Fig. 5. When this load is mathematically trans-
formed as an impedance parallel with the oscillator over the
frequency ranges of the input pulses we apply, its resistive
component is never more than 100 Q, hence a few times
smaller than all other sources of noise in the system such
that its effect is by far the most dominant.

Furthermore, we neglect any quantum corrections to the
noise correlation function and, as is shown in Eq. (7), treat
it, just as the rest of the system, fully classically. This is
typically a reasonable assumption in the limit of Aw <«
2kpT with @ being the applied, flux-dependent, effective
natural frequency of the oscillator circuit. In the case of
the experimental parameters used here, this limit is largely
satisfied, although in the worst case, when the flux through
the SQUID is close to integer multiples of a flux quantum
(where the effective natural frequency of the oscillator is
largest), we are slowly approaching a case where
hw < 2kgT; in particular, with 7 =0.300 K and at
fs =0, we have (hw/2kgT) Ni. Calculating the lead-
ing-order correction to the quantum version of the
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correlation function [40,41] leads to the following adjusted
Eq. (7):

(ni(tH)n; (1)) = <1 +%> o(t—1)6; ., (12)

which in turn we can interpret as a factor of approximately
1/24 change in the amplitude of the noisy current sources
associated with each of the resistors. Given that this is the
worst case, and this correction gets smaller as the flux that
is threaded through the SQUID shifts away from integer
multiple of ®,, we neglect it in our simulations.

VI. VOLTAGE RINGDOWNS

While we can simulate the evolution of an arbitrary
degree of freedom, of particular interest is @3 = ¢ops3, as
it corresponds to the output voltage, which is precisely
what is measured in the experiments. As already discussed,
we have two “knobs” that can be controlled in a given
experimental run: the flux bias f; and the amplitude of the
input pulse. The rest of the parameters are fixed at the
values described in Sec. IV. To explore the behavior of our
system better, it is therefore instructive to vary one of these
control knobs while keeping the other constant.

A. Amplitude scans

We first look at amplitude scans, where we fix the
applied flux bias f, and vary the amplitude of the micro-
wave burst, recording a ringdown trace for each excitation
strength of the SQUID oscillator. Figure 6 displays density
plots of such a case, obtained with experimental data (top
plot) and from simulations (bottom plot). The flux f; is
fixed at 0.30, which corresponds to the natural frequency of
the SQUID of 2.4 GHz (when the SQUID is operated in a
linear regime), satisfying a resonance condition. The y axis
is the attenuation setting from the highest (40 dB) to the
lowest attenuation (0 dB) corresponding to increasing burst
amplitude towards the bottom of the plot, and the x axis is
the ringdown time in nanoseconds. The color scale indi-
cates the amplitude of the ringdown. With increasing pulse
strength, the frequency of the ringdowns decreases. This
becomes particularly pronounced for attenuation levels less
than 20 dB. This shift to lower frequencies arises because
the fictitious particle, whose position coordinate can be
described by the ¢, degree of freedom, begins to explore
the nonlinear (flatter) part of the potential energy land-
scape. For attenuation levels less than 12 dB, we observe a
sharp drop in the resulting ringdowns. At this point, the
strength of the drive is now of the order of the critical
current of the SQUID. The stochastic nature of the thermal
noise causes different realizations to escape the potential
well at different times, which in turn causes a substantial
decay in the ringdown signal strength. This phenomenon is
discussed in more detail in the next section.

V (mV)
40 T T T T 4
@ 30F ‘ ] 2
£ 20----1—\; -------- 0
Z 10f i | ] -2
ih g l‘ 4 i 1 1 -4
0 0 1‘ 2 3 4 5
b) t (ns)
V (mV)
40 v T T T T 4
@30 ] 2
£
g 20 [ \ 1 0
!
Zop 0 1§
0 bt u:l L 1 1 -4
0 1 2 3 4 5

t (ns)

FIG. 6. A comparison of the amplitude dependence of ring-
downs at a noninteger flux bias of f; = 0.30, for the input signal
of Fig. 4(a) at 2.4 GHz. The plot in (a) shows experimental data,
while in (b) the corresponding simulations. The attenuation on
the drive pulse in decibels is shown on the y axis, with decreasing
numbers implying an increasing amplitude of the input pulse.
The ringdown time is shown on the x axis, while the ringdown
amplitude is represented by the color scale. The purple dashed
line in (a) indicates the amplitude corresponding to the ringdown
trace shown in Fig. 4(b).

B. Escape from the potential well

The problem of particle escape from a potential well due
to thermal noise has been investigated both theoretically as
well as experimentally in a variety of studies [42—46]. In the
case of a dc SQUID, this rate can be approximated to be
proportional to Qexp (—U,/kgT), where U, represents the
potential energy barrier height that the particle has to
overcome and Q the natural frequency along the direction
of escape. In our case, since we do not “tilt” the potential
with a dc bias current, the escape time (inverse rate) can be
shown to be much larger than the typical experimental run
time. This is true over almost all settings of the applied flux
bias f, except when f,; = 0.50, where the potential barrier
is close to being flat.

Thermal fluctuations, however, still end up playing an
important role in the evolution of the system. In particular,
we find that, during strong pulses that excite the system to
amplitudes in the vicinity of the SQUID’s critical current,
the thermal fluctuations can cause a strong mixing in the
phases of various realizations, resulting in a damping of
the ringdowns. To our knowledge, no detailed analytical
study of this effect, with strongly time-dependent, transient
pulses has been performed yet, but we can still study the
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FIG.7. Low and high drive response. Each row shows plots of ¢, (7), ¢o@» (1), and o5 () (the output voltage), respectively. In plots
(a)—(c) the amplitude of the input pulse is low with respect to the critical current of the Josephson junctions, whereas in (d)—(f) it is high.
The gray curves show a small subset of individual realizations used to calculate the averages (blue curves). In the case of the third
column, we also show the experimental data for the same parameters (red dots) and how it compares to the simulation results. From the
plots, one clearly sees how, when the drive is low, all the realizations stay within the same potential well [see plot (a)], and their relative
phase shift varies only slightly. In the case of a high drive, we observe that different realizations tend to end up in different wells at
different times [as shown in plot (d)], which introduces a relative phase shift between them. This in turn leads to faster decay of the

average voltage, which is reflected in plots (e) and (f).

situation numerically. To do this, we once again fix the
applied flux bias at f; = 0.30 as in the previous section and
concentrate on two different pulses: the first at an attenu-
ation of 15 dB and the other at the attenuation of 10 dB.
From Fig. 6, we can see that these correspond to cases
where substantial ringdown voltage is observed (the former
case) and where the ringdowns are dramatically suppressed
(the latter case).

In order to understand this behavior in more detail, we
look at the evolution of the individual realizations, that so
far have been averaged to obtain results comparable with
the experiment. We stress, however, that, while the behav-
ior of the full circuit is largely governed by the dynamics of
the SQUID, the experiment provides us access only to the
external voltage—the voltage at node 3 in Fig. 5—which in
our simulations is represented mathematically as ¢y¢psz. To
directly observe the stochastic nature of the escape from the
potential well, we need to look at the individual realizations
of the full system. Of particular interest are the following
simulation variables: ¢,, which represents the phase (i.e.,
the effective “position”) of the SQUID degree of freedom,
that dominates the evolution of the system; ¢y@,, which
represents the voltage across the SQUID (or alternatively
an effective “velocity” of the particle in the well); and
finally ¢y@3;, which is the voltage that we can directly

compare to the experimental data. Figure 7 shows plots that
describe the evolution of these variables as a function of
time. The top row shows data for a case of the low-
amplitude, 15-dB attenuation pulse, while the bottom row
shows the case of high-amplitude, 10-dB attenuation pulse.
The leftmost column represents ¢, (), the middle column is
Pop> (1), and finally the rightmost column is the output
voltage, namely, ¢o¢3(7). In each case, the gray curves
represent a subset of realizations that are averaged (curves
in blue). The red dots in the plots from the rightmost
column represent experimental data for the same set of
parameters as the simulations. The key signature of the
escape can be seen in the leftmost column. Here, when the
pulse amplitude is low (top row), virtually all the realiza-
tions stay within the same potential well—as one can see by
noting that they all oscillate around the same value of ¢,,
namely, ¢, ~—0.30z. In the case of the high-amplitude
pulse (bottom row), different realizations jump out to
different potential wells. The stochastic nature of the noise
causes these jumps to happen at different times, which
leads to a randomly shifted phase, as well as a different
steady-state value of ¢,. This has a substantial effect on the
“velocity” (or ¢,) of these realizations, as shown in the
central column of Fig. 7. The result is a dramatic randomi-
zation in the phase of ¢, and, as a result, of ¢3, which is
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FIG. 8. Fixed-amplitude flux scans with the applied flux bias f; between 0 and 1 and with the input signal of Fig. 4(a) at 2.4 GHz.

The top row (a)—(c) shows experimental data, while the bottom row (d)—(f) uses data obtained by running stochastic simulations.
The amplitude of the input pulse increases from left to right, with the leftmost column showing results for 20-dB attenuation pulses, the
middle column for 15-dB attenuation pulses, and finally the rightmost column for 10-dB attenuation pulses. As the amplitude increases,
one clearly observes the effects of the nonlinearity of the system. See the main text for a more detailed discussion.

proportional to the output voltage of the circuit. As we see
from the experimental voltage (red dots), the agreement of
the measured data with the simulations is good. Finally, we
stress that including the stochastic effects of thermal noise
in our simulations is crucial in reproducing this behavior.

C. Flux scans

We explore the voltage ringdown behavior further by
studying their dependence on the magnetic flux applied to
the SQUID. Here, the amplitude and frequency of the
microwave burst are fixed, while we vary the flux applied
to the SQUID through one period of a flux quantum. The
pulse frequency once again is chosen to correspond to
resonance at the SQUID flux bias f; ~0.30. The density
plots of the flux-modulated ringdown traces are shown in
Fig. 8 for three different pulse amplitudes. The top row
shows plots obtained from experimental data, while the
bottom row shows the simulations. The leftmost column has
a low-input pulse amplitude with 20 dB of attenuation, well
below the critical current of the SQUID, the central column
shows data for an input pulse with 15 dB of attenuation,
while the rightmost column has a high-amplitude pulse with
10 dB of attenuation. By varying the applied flux through the

SQUID, we are changing its effective inductance and, hence,
its natural frequency. It is worth stressing that this nonlinear
dependence of the natural frequency on the applied flux is
true even in the limit of small oscillations of the SQUID
(where |p,| < 1), as already discussed in Sec. I'V. Let us first
concentrate on the leftmost column of Fig. 8. Here the drive
amplitude is still small, and the nonlinearity of the potential
energy in ¢, is only beginning to play a role. Yet, as the
applied flux bias f varies between O and 1, the ringdowns
tend to fan out. As expected, the amplitude is largest near the
flux bias of f, ~0.30, since this is where the SQUID is
resonant with the input pulse, and it is suppressed elsewhere.
The results are also consistent with the fact that the natural
frequency, up to zeroth order in S, is proportional to

\/cos(zfy). Hence, near f; ~ 0, the variations in the ring-
down structure are small, while, at the same time, one sees a
very abrupt suppression near f; ~ 0.50. Here the effective
natural frequency of the SQUID is very small, and the short
input pulse is unable to induce strong oscillations. This is an
adiabatic regime, where the excitation of the circuit strongly
follows the input pulse. In this regime, the ringdown
suppression due to a highly off-resonant pulse can be
confirmed further by studying individual realizations and
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showing that they stay in the same potential energy well as
they started in, in contrast to what is observed during an
escape—see Sec. VIB. Furthermore, a very similar ring-
down structure can be obtained in a case where a simple
harmonic oscillator, with the same flux-dependent form of
natural frequency, is driven with the same pulse waveform.
The situation is largely similar in the middle column of
Fig. 8. The key difference here is that, now, not only is the
natural frequency of the system nonlinear in the applied flux,
but the amplitude of the input pulse is large enough for the
SQUID degree of freedom ¢, to start exploring the nonlinear
regions of the potential energy well. This effect is particu-
larly strong around the applied flux bias for which the
SQUID is resonant with the input pulse (near f, ~ 0.30).
This in turn affects the degree of variation of the ringdown
frequency with respect to f, as can be seen in the plots.
Finally, in the rightmost column, we see a case of a strongly
driven system. The resulting plots show an overall suppres-
sion of ringdown oscillations across all values of f,, when
compared to the instances with smaller drive amplitudes. In
this case, the reason is twofold. By once again studying the
individual realizations as in Sec. VI B, we can conclude that,
for the applied flux away from f; = 0.50, the main culprit in
the suppression is the randomization of the phase of ¢, due
to the stochastic escape from the potential well. Near
fs = 0.50, however, as in the case of low-amplitude pulses,
the main reason for the suppression is the off-resonance
condition, where the frequency of the pulse is much greater
than the natural frequency of the SQUID.

VII. APPLICATION TO FLUX MEASUREMENTS

The high sensitivity of SQUIDs to applied flux makes
them exquisite detectors of flux signals. They are useful
in various metrology experiments [9,47-50] and more
recently have played an important role in the field of
quantum computing, as measurement devices for flux
qubits [10-13,51]. In these applications, a flux qubit is
typically coupled inductively to a SQUID and, hence,
affects the net applied flux that is threaded through the
device. One of the original SQUID-based readout
approaches involves biasing the SQUID with an appro-
priately selected dc current, such that the SQUID is put in
a running state with nonzero voltage, with a high prob-
ability if the qubit is in one state and with negligible
probability when the qubit is in the other state [7]. In an
alternate approach, the SQUID is driven with a continuous
sinusoidal signal while monitoring the resulting phase
shift, which is qubit-state dependent [52]. Yet another
proposed readout scheme uses brief, but strong, current
bias pulses to the SQUID, which result in ringdown
dynamics with an amplitude, and possibly phase, that
depend on the qubit state [53]. This is somewhat analo-
gous to what is presented in the experiment described
here, although clearly in our case the flux differences are
due to a global flux biasing, as no qubit is actually present.

Furthermore, the theoretical proposal outlined in Ref. [53]
shows a full quantum treatment of the qubit and SQUID
system but considers only an ultrashort dc pulse, much
shorter than the inverse characteristic qubit frequency.
Because of the relatively high temperature of our mea-
surements, our present experiment is in the classical
regime and involves input pulses with a time scale
comparable to the dynamics of the circuit.

Nevertheless, it is still useful to explore briefly just how
the process of discrimination between two or more different
flux states could be accomplished with our system. First,
one can expect that the total applied flux through the
SQUID would consist of some static bias flux ®y;,, plus a
signal flux that is to be measured, say, Pgyn,. One could
then send a microwave pulse through the SQUID, analo-
gous to what was considered here, and record the corre-
sponding ringdown voltage. Some postprocessing of this
ringdown voltage, such as, for example, taking its root-
mean-squared value V ,,, integrated over a suitably chosen
time range, would provide a level corresponding to the
signal flux. As long as these levels of various values of
D ional can be distinguished, one has an effective flux meter.
For a given input pulse, assuming that V. is a well-
behaved function of the total SQUID flux ®,, one possible
way to find the best ®;,; over a range of flux where V
is monotonic would be simply to look for the largest
slope of V.. with respect to ®,, namely, maximizing
OV ims (tines P5) /0P, over all possible flux @ between 0
and 0.5®, (due to symmetry) and integration times f,.
This would give the greatest contrast between the cases of
Dpias + Pgignar and  Ppjpg — Pyipna- Figure 9 shows an
explicit example of this kind of flux discrimination based
on our measurements, where we calculate V¢ over a time
range between 2.1 and 3.4 ns. The data that are being used

0.8
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N
~
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FIG. 9. Root-mean-square output voltage V ¢ as a function of
the applied flux bias @, calculated over a time range between 2.1
and 3.4 ns. The plot uses data obtained with the 20-dB attenuation
input pulses and is the same as in the left column of the flux scans
from Fig. 8. The dots represent results calculated from the
experimental data (top row, leftmost column), while the solid
line is produced using the simulations (bottom row, leftmost
column). By biasing the flux through the SQUID near a point
where the slope is high, for example, at ®, ~ 0.36®, one can
have a means of distinguishing between different flux signals—
see the main text for more details.
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correspond to the input signal with 20-dB attenuation and
are the same as in the flux scans from Fig. 8. The dots
represent results obtained from the experimental data (top
row, leftmost column), while the solid line is produced from
the evolution calculated through stochastic simulations
(bottom row, leftmost column). We can further make a
crude calculation of the required sensitivity that one would
need with the data from Fig. 9 to distinguish between
two hypothetical flux qubit states. Setting the bias flux at
Dpias ~ 0.36®,, the slope is roughly 5 mV/®, If we
assume a conservative noise temperature of 150 mK for
an approximately 3-GHz amplifier with a bandwidth of
100 MHz [54,55], the rms voltage noise at the amplifier
input would be approximately 200 nV. If we take the
5 mV/®, slope for the signal at the output extracted from
Fig. 9 and divide by the net gain of the HEMT amplifiers
(approximately 55 dB), this becomes 9 uV/®, at the
SQUID oscillator output. We consider a peak-to-peak qubit
flux signal of 22 m®,, which is reasonable [7,56,57],
considering the backaction on the qubit would also likely
be significantly less compared to a switching dc SQUID
measurement, since the SQUID never enters the running
state. This then corresponds to a signal-to-noise ratio of
approximately 1. So, we would be right at the threshold
for reading out the ringdowns and distinguishing between
the two qubit states in a single shot. We should further
stress that one could likely do better by both using more
sensitive amplifiers and optimizing various parameters.
Of particular importance would be integration time f;y
and the pulse amplitude, as well as the quality factor of the
SQUID oscillator, all of which the V¢ curves are highly
dependent on.

VIII. CONCLUSIONS

In conclusion, we study the transient behavior of a dc
SQUID operated as a nonlinear oscillator under pulsed ac
excitation. Both experimentally as well as numerically, we
apply signals of various amplitudes for different flux bias
while observing the resulting voltage ringdowns. In order
to account for the nonzero temperature of the experiment,
we use the Johnson-Nyquist approach and model resistors
as noisy current sources. This lets us numerically reproduce
the stochastic escape dynamics observed when the SQUID
is driven with high-amplitude pulses. Finally, we briefly
discuss the potential applicability of our system, and, in
particular, the observed ringdown dynamics, to flux meas-
urement. We find a good general agreement between the
experimental data and results obtained through numerical
simulations.
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APPENDIX: EQUATIONS OF MOTION

In this Appendix, we present a derivation of the
equations of motion of a circuit which is used to model
our experimental apparatus. We start with a full description
of the system at zero temperature and reduce the equations
of motion by eliminating fast degrees of freedom. We then
add the effects of the temperature-dependent noise.

1. Zero temperature

As discussed in Sec. III above, the circuit diagram is
shown in Fig. 5. Our model assumes that the external flux is
delivered directly to the SQUID loop and other branches
have no intrinsic geometric inductance. We further neglect
the mutual inductance in the system other than the one that
mediates the external flux ®,. To obtain the equations of
motion, we follow the treatment of Devoret [58]. With each
node i, we associate a corresponding node flux ®; related to
a node voltage by ®; = ['_dr'V(¢'). We express the
currents across elements in terms of ®; and, using
Kirchoff’s current conservation conditions at each node
i, arrive at the equations of motion

1 ) . .
R_(Vin - (I)l) = Cin((I)l - @2)’
z
. . 2 2
Cin(®) — ;) = L_((DZ — Oy + ;) + I (©y — ®s)
g g

+C,®, + F‘I)z + Cou (P — ©3),
t

Cout((I)2 - (1)3) = R_¢3’

Z

. 1. .
(@y — @4 + D) = I sin(Py27/ Q) + 7 24t G2,
g i

2 ) 1. ..
f(q)z — (1)5) = IO s1n(¢>52ﬂ/¢)0) +?(I)5 + CJq)S.

g 1

l\'|[\)

Next, taking the flux quantum &, =2.07 x 10~1°
Wb = 27z¢,, we perform a change of variables so that
®; = (®y/27)p; = ¢op;. Here, a difference ¢; — ¢, for
some i # j corresponds to the superconducting phase
difference. We further take ¢, =1(ps+¢s), Cy=
Cp+ Cou+C,, and Ly = Py/27l, and rewrite the
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external flux ®; in terms of the ratio f; = (®,/P,). After
dividing all equations by ¢y, we have

. . 1, 1
0= Cin — Cingr + R—Z(m _mvin’
0=—-Ciy¢ + Cspr — Cou3 + TR
t
4
+L_(¢2 — @+ +7zfs)’
g
. . I,
0= _Cout(pZ + Cout(pB + R_(p37
Z
. 2 . 4
0=2C;p, +—singp, cosg_ —f(gaz — @4 +ﬂf_\-),
Ly L,
B 2 . 4
0=2C;p_ +—sing_cosp, —— (—¢p_ + nfy).
Lo L,

Thus, we end up with equations of motion for five degrees
of freedom. In order to further simplify the above, we note
that, in our case, the capacitances (or effective masses) of
oscillators ¢, and ¢_ are 2 orders of magnitude smaller
than that of ¢,. Furthermore, the Josephson inductance L j,
is much greater than the geometric inductance L. This
allows us to apply an Oppenheimer-Born-like approxima-
tion and eliminate the fast-oscillating degrees of freedom
¢ and ¢_. To do this, we first define a potential energy U
that can be associated with our system. Neglecting terms
due to the external drive, we have

1
= —COS¢, COS@_ +B((/L —xf)?

+ % 9 — (@2 + 7f )]

2E,

(A1)

with # = L,/L,. Next, we fix the slow variable ¢, and
note that, since f < 1, the second and third terms in
Eq. (Al) will dominate. Hence, the minima of U will be
close to ¢, = ¢, +nf, and ¢_ = nf,. By expanding U
near these points and minimizing, we can calculate the
corrections to the minimum points. Keeping terms up to
first order in S, we arrive at

sin (zf) cos (zfs + @»)
3 .

cos (zfy) sin (zfs + o)
5 .

golllin =nfy—p (AZ)

QI =af + @y~ (A3)
These results are then substituted back into the expanded
potential energy, which leads to U = Uy + U,, now only
in terms of ¢, and with

Yo

35 == cos (ef.) cos (g + 2f.)

and

= L sin (xf.) co af, + g2)

+cos® (nf,) sin(zfs + pa)]. (A4)
We distinguish between the contributions to the effective
potential energy between terms of different orders in 3. U,
neglects the geometric inductance completely, while U,
shows the correction up to first order in . We can hence
write a set of effective equations of motion with U, as the
potential energy, while now including the drive term, as

1

1
0=C.p, —Ci(p +—@, ———V.., A5
in®1 in®?2 + Rz @1 ¢0Rz in ( )
0 == Cinpy + Csdpr — Coupz + R P2
t
2 .
+——cos (zf,) sin (¢, + 7zf)
Ljo
in(4zf, +2 in(2
_,B Sln( ”fs + (pZ) + Sln( (pZ) , (A6)
2L

. . I
0=- Cout(pZ + Coutq).’a + R_(p3' (A7)

Z
The next step is to account for the nonzero temperature of
the system.

2. Nonzero temperature

We find that accounting for thermal noise is of particular
importance when comparing with the behavior of the
experimental system in our simulations, in particular, at
high-amplitude pulses. In order to model these effects, we
use the thermodynamic dissipation-fluctuation relation [39].
Thermal noise in the circuit is modeled by including a
current noise source of strength /(2kzT/R;)n; in parallel
with each resistor R;. We take kp as the Boltzmann constant
and T as the temperature of the system. Furthermore, each
n;(t) represents a normally distributed random variable,
namely, n; € N'(0, 1), that satisfies the following:

(ni(1)) =0, (A8)
(ni(t)n; (1)) = 8(t = 1')3; ;.

Adding such a noisy current in parallel with each of the
resistors to the effective model derived in Sec. A 1 leads to
classical Langevin equations, which after rearranging can be
written in a vector form as Eq. (5).
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