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Abstract

The dynamics of vortex flow in confined geometries can be explored with

weak-pinning channels of superconducting a-NbGe surrounded by strong-

pinning NbN channel edges. Periodic constrictions of the channel walls

lead to strong oscillations of the critical current, which we observe through

transport measurements of the vortex dynamics. We explore the role of

the shape and periodicity of the confining potential, as well as intervortex

interactions, by fabricating a variety of samples that me measure over a

range of temperatures. We have also fabricated asymmetric weak-pinning

channels in a superconducting thin-film strip. We present measurements

of vortex dynamics in the channels and compare these with similar mea-

surements on a set of uniform-width channels. While the uniform-width

channels exhibit a symmetric response for both directions through the

channel, the vortex motion through the asymmetric channels is quite dif-

ferent, with substantial asymmetries in both the static depinning and

dynamic flux flow. This vortex ratchet effect has a rich dependence on

magnetic field and driving force amplitude. By varying the channel geome-

try and configuration, we are able to explore our model for the asymmetric

confinement of the vortices in the ratchet. At high vortex densities, vor-

tex interactions both within channels and between vortices in neighboring

channels can often lead to a reversal of the effective ratchet potential

and a strong enhancement of ratchet signal. These effects may be due to

the vortex collective motions at such high vortex density regimes. Our

findings demonstrate the rich dynamics of vortex interactions in confined

geometries and asymmetric potential landscapes. We address the edge

barrier effect and propose the future directions and the potential methods

to avoid this effect.
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Chapter 1

Overview

Recent advances in nanofabrication have led to tremendous possibilities for imple-

menting superconducting pinning structures and controlling the motion of vortices.

The dynamics of vortices in confined superconductor geometries has generated much

interest, including studies of fundamental properties with vortex matter and devices

being based on the motion of the vortices. However a complete appreciation of their

properties is an intricate matter. An understanding of vortex interactions, both

vortex-vortex interactions and interactions between vortices and their surrounding

environments, may allow for the control of vortex dynamics at the mesoscopic scale.

We have fabricated strips with weak-pinning channels across the width for guiding

vortices in the presence of transport currents. The vortex dynamics were studied

through the standard four-probe measurement technique. The critical current that

characterizes the transition from the static state to the flux flow regime was measured

as well as the current-voltage characteristics (IVC). Varying the channel geometry and

measurement parameters, such as current amplitude, vortex density, and temperature,

we can probe the vortex behavior directly.

This thesis presents our investigations of the vortex dynamics in superconducting

weak-pinning channels. In Chapter 2, I survey some of the relevant basic concepts

of superconductivity, including the Meissner effect, the Ginzburg-Landau theory for
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providing a phenomenological description of superconductivity and the BCS theory

for providing a microscopic theory of superconductivity. I also discuss the vortex re-

sponse in a superconductor and the relevant concepts for describing vortex dynamics,

such as the flux flow resistivity, the vortex pinning by defects, and the Lorentz force

caused by applying a transport current to the vortices.

I continue with reviews of previous work on periodic pinning and vortex ratchet

effects in Chapter 3 and 4 respectively. Chapter 3 is a review of recent studies on pe-

riodic pinning in superconductors. Both theoretical and experimental investigations

will be included. I discuss different implementations of artificial pinning in supercon-

ducting films, including submicron pinning holes, magnetic dots, and different pinning

arrangements of periodic and quasiperiodic pinning arrays. I then introduce the mea-

surements of weak-pinning channels. I compare the different approaches among them

and explain the experimental results as well as theoretical simulations.

A review of the studies of the ratchet effect will be presented in Chapter 4. I

introduce the ratchet effect in general, then discuss the characteristics of a rocking

ratchet, which has an asymmetric spatial potential energy, and can exhibit directed

motion when an oscillatory drive is applied to the system. Subsequently, I focus on

the discussion of vortex ratchets. I discuss various theoretical proposals and the cor-

responding experimental implementations. Strong ratchet effects have been demon-

strated in numerous experiments. In some cases, there can be the surprising result

that the rectification occurs in the opposite direction from what one would expect

based on the sense of the asymmetry in the potential.

I introduce the basic experimental techniques used in the experiments in Chapter

5. The standard four-probe approach for measuring IV-curves and the critical current

will be presented. In Chapter 6, I present our measurement of vortex dynamics

in superconducting weak-pinning channels with periodic constrictions, where even

spaced channels, with each channel formed by multiple diamond-shaped cells, were

measured with the transport measurement technique. We have studied channels
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with various periodicities and channel spacing. Interesting features, including strong

commensurability in the field dependence of the critical current, magnetic hysteresis

in the critical current, and dynamical hysteresis in the vortex motion through the

channels are presented in this chapter. I also address some of the influences on edge

barrier effects in our results.

The implementation of a vortex ratchet with superconducting weak-pinning chan-

nels is presented in Chapter 7. The channels are similar designs to the ones in Chapter

6, but the cells are triangular in shape, forming an asymmetric potential landscape.

Strong ratchet effects were observed in our measurements. A rough model of the

potential for a vortex in the ratchet cell was proposed. The transition from the static

state to dynamical state is investigated in the confined channels. A study of the

magnetic hysteresis for these samples shows interesting results both on the critical

current and the net vortex drift in response to an oscillatory driving force.

In Chapter 8, I present the experimental studies of the ratchet effects by varying

the ratchet parameters, including the ratchet cell shape, channel spacing and the

measurement temperatures. Subsequently, we investigate the ratchet response at

high vortex densities where we often observe a strong enhancement of the ratchet

signal and can sometimes lead to a reversal of the effective ratchet potential. These

effects may be due to collective interactions of vortices and I present measurement

data in various high vortex density regimes.

I discuss the commensurability in the critical current field dependence in Chap-

ter 9 while we vary the cell period and channel spacing in a set of ratchet samples.

Commensurabilities were particularly strong at small cell lengths. I present our mea-

surement results for various sample parameters. The limitations and complications

of our experiments are given, particularly with regard to the edge barrier effect. I

propose future research directions in which the edge barrier can be avoided with

closed circular channels on a Corbino disk geometry. I also present the necessary

measurement tool – a picovoltmeter, which we developed by utilizing a Supercon-
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ducting QUantum Interference Device (SQUID), for probing the flux-flow motion of

a small number of vortices at low velocities where the flux-flow voltage is too weak

to be observed with a room-temperature amplifier.



Chapter 2

Brief survey of superconductivity

and vortex physics

2.1 Introduction

Almost one hundred years ago on April 8, 1911, H. Kamerlingh Onnes discovered

superconductivity in liquid helium in Leiden, where zero resistivity of mercury was

measured [1, 2]. In his notebook, he wrote “resistance practically zero” [2]. He referred

to the phenomenon of zero-resistivity as superconductivity. Subsequent measurements

of the resistance for other materials at the liquid helium temperature were performed,

and many more metals and alloys were found since then to be superconducting below

a well-defined critical transition temperature Tc, or characteristic of the corresponding

metals.

More than 20 years after superconductivity was first discovered, Meissner and

Ochsenfeld revealed another hallmark of superconductivity in which they discovered

the ‘perfect diamagnetism’ in 1933 [3]. They found that applied magnetic fields

will be excluded from entering a superconductor, as one would expect from perfect

conductivity. But strikingly, they also discovered that the applied magnetic field

at the normal state will be expelled when the superconductor is cooled through Tc.
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H

T

Hc(0)

Tc
0

superconducting

normal

Figure 2.1: Hc(T ) showing the phase diagram of superconductivity.

This Meissner effect is independent of whether there was a magnetic field before

the superconducting transition or if the field was switched on later, which implies

that a critical magnetic field Hc can destroy superconductivity. This critical field

Hc separates the normal and superconducting states by a thermodynamic phase-

transition (Fig. 2.1).

The first successful phenomenological theory of superconductivity was published

in 1935 by brothers F. and H. London [4]. Their theory described two basic electro-

dynamic properties of superconductivity concerning the characteristics of a perfect

conductivity and the Meissner effect. The second London equation also introduced

the penetration depth λ, characterizing a length scale over which a magnetic field is

exponentially decreased into the superconductor.

Ginzburg and Landau (GL) introduced a theory of the superconducting phase

transition in 1950 [5]. In this theory, the superconducting electron density ns was

described by a wave-function ψ

ns = |ψ(x)|2. (2.1)

Another important length scale in superconductivity introduced in the GL theory

is coherence length ξ, which characterizes the distance over which the superconduct-
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ing order parameter can vary. The coherence length ξ is found to diverge as the

temperature approaches Tc:

ξ ∝ (Tc − T )−1/2 (2.2)

The superconducting order parameter κ was defined in the GL theory by the ratio of

the two characteristic lengths

κ =
λ

ξ
(2.3)

One cannot have a general form for describing the temperature dependence of λ(T )

in terms of the λ(0) due to the variation of κ at the zero temperature for different

metals [6]. But the dependence based on the “two-fluid” model can practically fulfill

the experiment purposes in the limit that the measurement temperature is not close

to T = 0. Thus λ(T ) can be described as

λ(T ) ≈ λ(0)[1− (T/Tc)
4]−1/2. (2.4)

In 1957, based on the GL theory, Abrikosov proved the existence of a so-called

intermediate state in type-II superconductors [7]. In this mixed phase of supercon-

normal state

mixed state

Meissner state

TTc(0)

H

Hc2(0)

Hc1(0)

0

Figure 2.2: Phase diagram for a type-II superconductor.

ducting, above the first transition field Hc1, a continuous increase in the flux density
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is expected until the B field reaches another critical field Hc2, eventually destroying

the superconductivity and entering the normal state (Fig. 2.2). The transition be-

tween type-I and type-II superconductivity is well defined by the GL order parameter

at κ = 1/
√
2. For a pure superconductor, κ ≪ 1, whereas κ > 1/

√
2 for a type-II

superconductor. Abrikosov also found that the magnetic flux in the mixed state of a

type-II superconductor must be quantized in a single quantum of flux

Φ0 =
h

2e
= 2.07× 10−15 T −m2. (2.5)

It is often more practical experimentally to work with Φ0 in CGS units with lengths in

µm, because the length and the field in the experiments are usually measured in µm

and Oe respectively. In this case, Φ0 = 20.7 Oe−µm2. Each flux is called a vortex,

such that the supercurrent circulating around the vortex concentrates the flux toward

its core where the order parameter vanishes.

The GL theory is crucial for understanding the macroscopic quantum-mechanical

nature of superconductivity. After J. Bardeen, L. N. Cooper and J. R. Schrieffer

(BCS) first introduced ‘Cooper pairs’ in 1957, the microscopic theory of supercon-

ductivity finally moved a revolutionary step [8]. At the superconducting state, elec-

trons tend to bind in pairs, thereby having a lower energy level than in the Fermi-sea

ground state. The electrons in Cooper pairs interact by exchanging phonons. The

BCS theory predicted that a minimum energy Eg = 2∆(T ) is required to break the

Cooper pairs from the ground state. ∆(T ) is the energy gap between the ground

state and the quasi-particle excitations of the system, in the order of kTc, where k is

the Boltzmann constant. In 1959, Gor’kov was able to show that the GL theory is a

limiting form of the BCS theory when the temperature is near Tc [9].

It is possible to calculate the superconducting parameters in the case of dirty

metal, in which the electronic mean free path is shorter than the coherence length.

Therefore, the band-structure complication can be neglected in such dirty supercon-
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ductors [9, 10]. Measuring the slope of Hc2(T ) at the temperature near Tc,

S ≡ −µ0

dHc2

dT
|Tc
, (2.6)

where µ0 is the magnetic permeability in a vacuum, and applying the BCS expressions

in Tinkham [6], at zero temperature, one can obtain the effective coherence length

ξ(0) and effective penetration depth λ(0) [10]:

ξ(0) = 1.81× 10−8(TcS)
−1/2, (2.7)

λ(0) = 1.05× 10−3(ρ0/Tc)
1/2, (2.8)

in SI units such that [S] = TK−1, [ρ0] = Ω m and [ξ(0)] = [λ(0)] = m.

2.2 Key properties of vortices

Vortex lattice

As described previously, each vortex is surrounded by a circulating screening current.

The vortices in a bulk superconductor experience a repulsive force from neighboring

vortices due to the interaction with the circulating current. When the vortex spacing

is comparable to the penetration depth λ, the vortices will form a triangular array

in order to maintain the lowest energy of intervortex interaction. And the triangular

lattice constant a0 can be described as:

a0 =

(

2√
3

)1/2
√

Φ0

B
. (2.9)

a0 is about 5 µm for B = 1 G.

Lorentz force

In an ideal bulk superconductor, where there is no pinning of any kind and no surface

or edges, any non-zero current applied to the vortex can lead to the movement of

the flux lines through the interaction between the applied current and the circulating
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current around the vortex. The behavior of vortices threaded in a superconductor

can be probed by measuring the transport properties. A current density J exerts a

Lorentz force on a vortex:

FL = J× Φ0n̂. (2.10)

where Φ0 is the flux quantum, h/2e.

Flux-flow

Because the superconductivity is suppressed in the vortex core, the motion of vortices

generates a longitudinal voltage, transverse to the direction of the vortex flow. This

movement will generate an electrical field that is parallel to the applied current, thus

causing the vortex motion to create a non-zero resistance. The flux flow of vortices

leads to a dissipation, which can be characterized by the vortex viscosity:

η =
Φ0Bc2

ρn
(2.11)

where ρn is the normal-state resistivity of the material, and Bc2 is the upper-critical

field [6],[11]. The vortex effective mass is expected to be small enough so that it

can only play a role in the vortex motion at an extremely high frequency [12]. Thus,

appropriately placed electrical leads can be used to probe this flux-flow voltage. After

first treated by Bardeen and Stephen [11], Kim et al. [13] experimentally confirmed

the flux-flow resistance in type-II superconductors (Fig. 2.3). The sheet resistances

of superconducting NbTa and PbIn were measured with the standard transport mea-

surement technique. Section 5.2 will introduce the transport measurement techniques

and necessary procedures that must be taken in order to measure the flux-flow voltage

described above.

Nonlinearities at high flux-flow velocities

An electronic instability, where an abrupt switching from the superconducting state

to the normal state was predicted when the flux-flow velocities in type-II supercon-
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Figure 2.3: The measurement of flux flow resistance in type-II superconductors from Kim et al.

[13]. Transport voltage LV increases linearly following an initial nonlinear response with applied

current I in the type-II superconductor mixed state. Inset, the schematic of the sheet sample and

measurement setup. (from Kim et al., 1965, p.A1165)

ductors reach a certain critical limit [14]. Larkin and Ovchinnikov (LO) first reported

that this switching instability was caused by the nonequilibrium distribution of the

quasiparticles, rather than the instability dominated by heating. The electronic field

due to the vortex motion accelerates bound quasiparticles states in the core, causing

some to begin leaking out of the vortex core. This can cause the core size to shrink

and cause a decrease in the vortex viscosity, thus causing an upwards curvature in

the current-voltage characteristics. A generic current-voltage characteristic (IVC) is

shown in Figure 2.4.

More recently, Doettinger et al. [15] reported the first observation of this effect in

high-Tc superconductors, where they can extract the flux-flow critical voltage V ∗ by

fitting the experiment IV characteristics with [15, 16]:

I − Ic =

[

V

1 + (V/V ∗)2
+ V

(

1− T

Tc

)1/2
]

1

Rf
, (2.12)

where Rf is the flux-flow resistance. The vortex critical velocity υ∗ϕ and the electron-
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Figure 2.4: An IVC showing nonlinearities at the high flux-flow velocities.

phonon inelastic scattering time τin can be calculated with the following equation

from the LO theory [14, 15]:

V∗ = −(υ∗

ϕ ×B)L, (2.13)

where B and L are the magnetic field and the sample length between the voltage

probes. The vortex critical velocity υ∗ϕ is about 300 m/s for a NbGe film [17]. A

more detailed treatment with consideration of the edge barrier screening effects was

reported by Bezuglyj and Shklovskij [18] And the influence of barriers on the vortex

entry at surfaces and edges will be discussed in Chapter 6.

Pinning

In order to have a good type-II superconductor for technological applications, so

that it can carry high currents in the presence of the flux line without or with lit-

tle dissipation, the flux lines have to be pinned. This can be achieved usually by

artificial means, such as dislocations, radiation-induced pinning defects, materials
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defects, grain boundaries, nanovoids etc. More recently, with the development in

nanofabrication, submicron pinning holes or magnetic dots have been implemented

in superconducting thin films in order to increase pinning force. The experimental

implementation of artificial pinning sites in superconducting films will be addressed

in more detail in subsequent chapters.

When a vortex is near the inhomogeneities in superconductors, the force between

the vortex and the defect tends to pin the vortex in place. A calculation carried out

by Mkrtchyan and Schmidt shows that it is always energetic favorable for a vortex

to be attracted by a cavity in the superconductors [19] before the number of trapped

vortices reaches a critical value, which largely depends on the superconductor and the

cavity parameters. With vortices pinned in the pinning centers, the superconductors

can now sustain a finite current without flux motion and dissipation. The current

at which the threshold force is required to cause vortex motion is referred to as the

critical current. A more detailed discussion can be found in Chapter 3.

Thin-film superconductors

By solving the combination of the Maxwell’s equation and the second London equa-

tion, at the limit of r ≫ λ, where r is the distance to the vortex center, one can have

the magnetic field of a vortex in a bulk superconductor as [6]:

h(r) ≈ Φ0

2πλ2

(

π

2

λ

r

)1/2

e−r/λ, (2.14)

where h(r) decays exponentially at far distances. When the thickness of the super-

conductor becomes less than the London penetration length, the vortices undergo a

long range vortex-vortex interaction. Pearl [20] calculated that the screening currents

do not fall off exponentially in the thin-film limit, but follows a power-law through a

longer thin film penetration depth instead [21]:

J(r) =
c

4π

Φ0

π

1

r2
for r ≫ λ⊥ ≈ 2λ2/d, (2.15)

where d is the thickness of the superconductor, and d < λ.
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Chapter 3

Superconducting nanostructures

for controlling vortex dynamics

3.1 Introduction

Reducing the dissipation in type-II superconductors caused by the motion of vortices

is an important issue for scientists. In order to achieve the lower dissipation, increasing

the vortex pinning would be the first intuitive way to do so. Therefore a larger pinning

force fp and a larger critical current density jc will be achieved in the superconductor,

which can be useful for practical applications.

Recent advances in nanofabrication have enabled implementations of artificial

periodic vortex pinning lattices in superconducting films. Such structures are typically

produced with arrays of either nanoscale holes through the film [22, 23] or magnetic

dots underneath the film [24]. These structures result in a substantial magnetic field-

dependence on the critical current.

The critical current in periodic pinning structures typically exhibits commensurate

behavior with maxima when the magnetic field corresponds to an integer number of

vortices per pinning site. For fields away from these matching points, the dynamics

of interstitial vortices, which are not located on the strong pinning sites but are
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more weakly confined through interactions with the strongly pinned vortices, lead to

lower critical currents. Recently, a variety of experiments have been performed on

such pinning arrays as well as many simulations of vortex dynamics in these periodic

pinning systems.

In this chapter, I will provide highlight of previous work on periodic pinning struc-

tures, including some of the simulations and their corresponding implementations,

followed by an introduction of superconducting weak-pinning channels, the structure

of which will be discussed later in this thesis.

3.2 Survey of studies of vortices in periodic pin-

ning structures

3.2.1 Nanoscale holes

One approach for controlling the vortex motion in superconductors is to create sub-

micron holes by using lithographic and etching techniques. These submicron holes are

usually referred to as “antidots” in the thin films, which act as well-defined pinning

centers. The pinning holes sometimes do not perforate the film, which is also referred

to as “blind dots.” Mkrtchyan and Shmidt [19] studied the interaction between a vor-

tex and a cavity in a type-II superconductor theoretically. Under the assumption of

the cavity radius r ≪ λ, where λ is the penetration depth, capturing a single vortex

by the cavity is always energetically favorable. After a vortex has been captured, the

vortex free energy undergoes a qualitative change, and it may result in a potential

barrier between the vortex and the cavity so that the capture of subsequent vortices

in the cavity largely depends on the superconductor and the cavity parameters, which

could be energywise favored or not.

Both the square and rectangular pinning arrays were simulated numerically by

Reichhardt et al. [25]. The simulation results indicated a strong commensuration
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enhancement of pinning strength, both in square and rectangular pinning arrays.

For rectangular arrays, the commensurability effects at the matching fields depended

on whether the driving was along the long or short direction of the arrays. In any

case, the pinning force was found to be much higher along the long direction, also

referred to as the “hard” direction by the authors, where the matching effects were

considerably reduced. The authors also found that for higher fields, the matching

effects were reduced and certain peaks were absent.

Before I discuss the experiments on the periodic pinning structures, it is worth

noting that all of the antidot experiments have to be performed very close to Tc

to avoid the background pinning in the film from dominating the antidot pinning

potential [26]

The composite vortex lattice consisting of vortices at the antidots and interstitials

was studied by Baert et al. [22]. The authors demonstrated the periodic arrays of

antidots could be successfully used in order to stabilize such composite flux phases.

The authors patterned a square lattice of submicron holes in a Pb/Ge multilayer

superconductor. They studied the vortices pinned at the holes and at the interstitial

positions. The authors then found that the mobility of the vortices at the interstices

were strongly temperature dependent, which made it possible to see the transition be-

tween an ’insulating’ (fully localized vortices) and a ’metallic’ (a collective delocalized

state) behavior by tuning the temperature.

In order to find the optimum size for antidots, Moshchalkov et al. [27] patterned

arrays of submicron holes in superconducting Pb/Ge multilayer and single WGe films.

The measurement of magnetization and pinning force showed strong enhancement

by the arrays of antidots, as well as matching effects. It was suggested from the

experiment that a pinning center with a size(diameter - D) considerably larger than

the superconducting coherence length ξ(T ) is much more efficient than pinning centers

with D ≈ ξ(T ) (Fig. 3.1). That is, antidots with a larger size than ξ(T ) can provide

a larger pinning force fp, and therefore provide a larger critical current density jc,
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which is important for practical applications.

Figure 3.1: The magnetization curves and pinning force of the antidots with different diameters

from Moshchalkov et al. [27]. (a) The magnetization curves, antidots with diameter D = 0.15 −
0.4 µm; (b) The pinning force vs. field. The matching fields are indicated by dashed lines. (from

Moshchalkov et al., 1998, p.3616)

The anisotropy in the depinning force and the commensurability effects were ex-

perimentally realized by Van Look et al. [28]. Instead of employing rectangular

pinning arrays, authors in this paper presented measurements on square arrays with

rectangular shaped submicron holes, fabricated on a superconductor Pb film by an

electron-beam lithography and etching. Both blind dots and antidots were studied

in this work. When a current was applied along the long direction of the rectangle,

stronger matching effects were shown in both systems than if the current was applied

along the short direction (Fig. 3.2). The mechanisms determining the direction was

different in the two systems. In the case of the superconducting film with rectan-

gular antidots, the vortex-vortex interaction was found to be anisotropic, which was

responsible for the higher critical current. On the contrary, the vortex-vortex inter-

action was isotropic for the case of rectangular blind antidots. Instead, the shape of

the pinning sites and the fact that a vortex could move around freely within the blind
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antidots caused the anisotropy in the critical current (Fig. 3.2).

Figure 3.2: Normalized critical currents Icx and Icy as a function of normalized magnetic field

H/H1 from Van Look et al. [28], measured with a current in the x (circle) and y directions (dots),

respectively. Where (a) T/Tc = 0.995 and (b) T/Tc = 0.992, and H1 is the first matching field,

corresponds to one vortex per pinning site. (from Van Look et al. , 2002, p.214511-2).

The enhancement of the flux pinning strength at the pinning holes is widely as-

sumed to be responsible for the critical current commensurate enhancement. However

Patel et al. claimed that the origin of the matching effect in such a system is a hole-

induced suppression of the critical temperature instead [29]. Superconducting Nb

films with triangular arrays of antidots were measured near the zero-field critical

temperature, which is required for a typical antidot experiment in order to avoid the

background pinning from getting too strong. At those temperatures, the coherence

length ξ becomes comparable to the width of the superconductor between the holes.

An experimental approach was presented, utilizing a comparison of the magnetic field

dependences of the resistance R(H) [Fig. 3.3(a)] and the critical temperature in per-

pendicular and parallel magnetic field directions. The baseline derived is based on a

wire network analysis matched to the R(H) curve [Fig. 3.3(b)]. The authors, then

described that the matching effect where the resistance exhibited minima indeed was

originated from the hole-induced Tc suppression [29].
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(a)

(b)

Figure 3.3: Theory proposal and measurements to demonstrate the origin of antidots pinning

enhancement from Patel et al. [29]. (a) A proposed approach to identify the origin of the matching

effect in a superconducting film with a regular hole array. The dots represent typical experimental

results. (b) R(H) curves at T/Tc = 97.4% and H(T ) phase diagram (inset) showing open circles

obtained in parallel fields form the wire network baselines for those in perpendicular fields (dots).

(from Patel et al., 2007, p.020508-1 and p.020508-3).

3.2.2 Magnetic dots

A different approach rather than using antidots for introducing pinning centers in the

superconductor is to utilize submicron magnetic dots. Devices with magnetic dots

usually consist of arrays of magnetic islands (Ni, Co etc.) on superconducting films

(Pb, Nb etc.). Such a system provides a useful tool in understanding the interaction

between vortices and material imperfections, and enhances the critical current [30, 31].

Mart́ın et al. first reported the study of the pinning interaction between the

vortex lattice and ordered arrays of submicron magnetic dots [32]. A triangular array

of magnetic Ni dots in a superconducting Nb film was fabricated using electron-

beam lithography and liftoff techniques. Periodic minima had been observed in the

resistivity as a function of the perpendicular magnetic field (Fig. 3.4), which was

carried out with standard transport measurement techniques; this data indicated

a strong pinning enhancement at the magnetic dots. The nature of the pinning

mechanism induced by magnetic dots was principally determined either by a magnetic

interaction between the magnetic dot and the magnetic moment of the vortex, or by

a local suppression of the superconductivity due to the ferromagnetic proximity to
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the magnetic dot [32]. The authors also pointed out that the pinning is the most

efficient when ξ, the coherence length, is closest to the size of the pinning site, which

was proved otherwise by Moshchalkov et al. [27] in an experiment where arrays of

antidots were measured as was aforementioned in this chapter.

Figure 3.4: ρ(B) curve of a Nb thin film with a triangular array of Ni dots from Martin et al. [32].

The lattice constant d = 410 nm, T = 8.2 K and J = 2.5× 104 A/cm2. The inset shows essentially

a linear dependence of Bn = n∆B0 with ∆B0 = 141± 4G. (from Martin et al., 1997, p.1930)

Similar magnetic dots were studied by Van Bael et al. by utilizing magnetization

hysteresis loop measurements and scanning-force microscopy [33]. In the experiment,

superconducting Pb films were deposited on top of the elongated submicron Co is-

lands. The authors demonstrated with measurement results that the magnetized

islands act as strong flux pinning arrays. More studies on square or triangular arrays

of magnetic dots, placed underneath or on top of the superconducting film, can be

found elsewhere [24, 34, 35].

3.2.3 Other periodic pinning lattice

Periodic pinning experiments beyond the simple periodicities of the initial measure-

ments have been intensively investigated in the last few years, and some different

pinning array arrangements will be briefly discussed.
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Quasiperiodic lattices

Figure 3.5: The schematic of a fivefold Penrose lattice from Misko et al. [36]. (a) The elemental

building blocks are rhombuses with equal sides a and angles which are multiples of θ = 36◦ and

(b) showing two kinds of rhombuses “thin” and “thick” as indicated. (from Misko et al., 2006,

p.024522-12)

In addition to the studies of square and triangular arrays, Misk et al. had studied

the flux pinning interactions in chains of pinning arrays and 2D quasiperiodic, Penrose

lattice (Fig. 3.5)pinning arrays [36, 37]. The enhancement of the critical current

in films was observed in the simulation results, suggesting that the Penrose lattice

provided a tool to control the magnitude, sharpness and position of the peaks of

Jc(Φ), which is important for possible applications.

Experiments for studying such fivefold Penrose pinning arrays have been carried
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out widely, such as in Ref. [38–40]. I will give a brief review to these references and

point out the corresponding key results.

Figure 3.6: Images of antidots in different arrangements from Kemmler et al. [40]. (a) Nb

sample strip, antidots (125 nm radius) arrays in: triangular lattice (b), Penrose lattice (c), random

arrangement (d). (from Kemmler et al., 2006, p.147003-2).

Villegas et al. had fabricated arrays of magnetic dots (Ni) in superconducting

Nb films, and the magnetoresistance of samples had been studied with transport

measurements. The minima of magnetoresistance appeared at the matching fields,

corresponding to the increase of the flux pinning. Between the studies with two

different quasiperiodic lattices: a Fibonacci sequence/Penrose and pentagonal fractal

array, the authors found that the short vortex lattice (VL) correlation length existed

in the Fibonacci array. On the contrary, the longer length scales were preserved in

the pentagonal fractal array [38]. This implied the long-range correlations of VL in

the pentagonal arrays.

A direct comparison in three different periodic arrays and quasiperiodic pinning

arrays of antidots in superconducting Nb films has been investigated by Kemmler et

al. (Fig. 3.6) [40].
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In this experiment, essential features in the Ic(B) patterns as predicted by Misko et

al. [37] were confirmed. There were enhancements of Ic in films with Penrose lattices,

but these were not as strong as triangular antidot lattices. Since the enhancements

of Ic occurred only at fields close to the matching fields, which corresponded to the

artificial pinning arrays, it was possible to have well designed pinning arrays so that

the critical current enhancement had a broader distribution in the magnetic field

comparing to simple periodic pinning lattices (Fig. 3.7).

Figure 3.7: Comparison of four different antidots arrangements from Kemmler et al. [40]. Inset:

IVC at B = 0 (right) and B = B1 (left). (from Kemmler et al., 2006, p.147003-2).

A direct imaging of the vortex distribution in a fivefold Penrose array of Co

dots using a scanning Hall probe microscope had been carried out by Kramer et al.

[39]. The experiment result was in strong agreement with the molecular dynamics

simulation performed by Misko et al. at a field smaller than one vortex per cell

[36, 37]. In the mean time, the vortices from ringlike structures at larger fields could

stabilize a giant vortex state of two flux quanta at the center of the ring.
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Random dilution of pinning

To answer the question of how to maximize the critical current with the smallest

possible number of pinning sites, Reichhardt et al. studied superconductors with

diluted pinning arrays by using numerical simulations [41], where the periodic pinning

arrays were diluted by randomly removing a fraction of the pinning sites.

Figure 3.8: Scanning electron microscopy images of Nb thin films with randomly diluted antidot

arrays in triangular lattices from Kemmler et al. [42]. The lattice constant a(Pd) = 3.4− 2.1µm, for

dilutions Pd = 0 − 0.6, are scaled to maintain a constant antidot density np = 0.1 µm−2. D is the

diameter of the antidots. (from Kemmler et al., 2009, p.184509-2).

Because the vortices remained correlated even after the pinning array had been

diluted (up to 90% dilution rate had been confirmed), pronounced commensurability

effects appeared at the same magnetic field strength as in undiluted pinning arrays.

Moreover, the authors discovered that the commensuration could occur at fields sig-

nificantly higher than the matching field (H1) of an undiluted array. In the case

where 90% of the pinning sites being removed, the matching field for a diluted array

H⋆
1 = 10H1.

This theory was experimentally confirmed by Kemmler et al. [42], where periodic

arrays of antidots in Nb thin films were investigated with transport measurements

(Fig. 3.8).
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Vortex dynamics in periodic pinning arrays

The hysteretic dynamics of vortices in periodic arrays of antidots were recently re-

ported by Gutierrez et al. [43], where an artificial periodic array of antidots had

been investigated with transport measurements. Sudden jumps on the IVCs were

observed, which indicated different phases of the vortex dynamics during the mea-

surements (Fig. 3.9).

(a) (b) (c)

Figure 3.9: Sketches of the vortex motion from Gutierrez et al. [43]. (a) the interstitial vortex mo-

tion, (b) the turbulent-like 2D motion and (c) the 1D incommensurate row motion. (from Gutierrez

et al., 2009, p.140514-2)

When temperatures were near the transition temperature Tc and the magnetic

fields were close to the first matching field, dynamic hysteresis effects on the IVCs

could be detected (Fig. 3.10). Only interstitial vortices were moving while ramping

up the driving force across the II-III boundary, whereas a disordered flow involving

all vortices was presented while ramping down the current across the III-II boundary,

therefore leading to a higher dissipation.

As reported in previous theoretical work, the transition to turbulent flow related to

the interplay between interstitial vortices and those pinned in the antidots [36, 44, 45].

By using molecular dynamics simulations, Reichhardt et al. predicted that strong
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Figure 3.10: E − J curves ramping up and down the driving current from Gutierrez et al. [43].

T = 1.274 K, B/B1 = 1.01. An irreversibility is presented, and phases are labeled in italics for the

ramping down case. (from Gutierrez et al., 2009, p.140514-3)

voltage fluctuations on this phase were caused by the disordered motion of vortices

[46].

3.3 Summary of previous work on weak-pinning

channels

Vortices flowing through nanofabricated easy flow channels in superconducting films

provide a useful system for studying the dynamics of interacting particles moving in

tailored confining potentials. The fabrication of weak-pinning channels for guiding

vortices through superconducting films at the nanoscale was well established [47, 48].

In the paper by Drift et al., the film consisted of a ∼ 500 nm amorphous NbGe and

a ∼ 50nm polycrystalline NbN on the top. The authors sputtered the double layer

structure in a two step process without breaking the vacuum. In order to achieve

∼ 100nm channel width, the fabrication involved the electron-beam lithography and

reactive dry etching.
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Such channels have been employed in a variety of investigations of vortex dy-

namics with relatively large magnetic fields, typically greater than 103 Oe, including

experiments on commensurability [48, 49], mode locking [50] and melting in confined

geometries [51].

Figure 3.11: Schematic of a vortex lattice in a superconducting channel from Pruymboom et al.

[48]. (a) the channel structure of a superconducting bi-layer and (b) two different orientations of

the FLL for Weff . (from Pruymboom et al., 1988, p.1430)

Pruymboom et al. [48] studied a 2D flux-line lattice (FLL) flowing in the weak-

pinning channels. With the four-probe technique, the shear strength and the hystere-

sis effects on the pinning force were directly probed. Fig. 3.11(a) is a schematic of

the four-probe configuration and a side view of the channels. Figure 3.11(b) shows

the effect width Weff for two different FLL orientations. The flux line shear was

described by a continuum approximation,

Fp = 2Ac66/W, (3.1)

where A is a constant, shear modulus c66 can be written as [52]

c66 =
B2

c2

8µ0κ21

κ

κ2

2

b(1− 0.29b)(1− b)2, (3.2)



3.3 Summary of previous work on weak-pinning channels 29

κ, κ1(T ) and κ2(T ) are the Ginzburg-Landau and Maki parameters, the latter being

used for the dirty limit.

Figure 3.12: Recording traces of Fp vs. b = B/Bc2 from Pruymboom et al. [48]. Measured at

1.74 K (≃ 0.6 Tc) from the dynamic measurements. The continuum model is in a solid line. (from

Pruymboom et al., 1988, p.1430)

As one can see from Figure 3.12, the measurement data lay well between the Fp

values. The hysteresis effects were caused by the nucleation and denucleation of the

flux lines at the NbN edges. The inset in Figure 3.12 indicates the transfer from

nucleation to denucleation could take place in a very small field interval, which was

consistent with earlier predictions by Walton et al. [53].

A dc-rf interference technique was developed by Kokubo et al. [50] for a mode

locking measurement of vortex lattice configurations, where an rf force with frequency

f was applied through an rf transformer with balanced transmission lines and a

matching circuit. A microscopically periodic velocity modulation was induced at the
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Figure 3.13: IV curves measured with a dc-rf interference technique from Kokubo et al. [50].

dc-IV curves measured with superimposed 6 MHz rf currents (amplitude from 4.7 to 0 mA, from

left to right). Vp is interference voltages, where p is a integer. Upper inset: Vp(f) for p = 1 and 2.

Lower inset: schematic of vortices and a single channel. (from Kokubo et al., 2002, p.247004-1)

washboard frequency fint = v/a when a vortex lattice moved coherently at an average

velocity v [54], where a is the lattice period in the direction of motion. When f/fint =

p/q, p and q are both integers, these modulations get mode locked. Consequently,

interference plateaus appeared in the IV characteristics (Fig. 3.13).

Because Jc shows oscillations and was globally proportional to c66, the authors

discovered that phenomenologically, Jc followed Eq. 3.1, although it was very sensitive

to positional disorder of the vortex arrays in the channel edges. As shown in Figure

3.14, the number of vortex rows is better displayed by plotting the ratio of V1 over f

as a function of the field when the vortex lattice is moving coherently. The average

interference voltage per channel can be easily derived as [50]

Ṽp,q =
p

q
Φ0fn, (3.3)

where n is the number of rows. Since there were ∼ 200 channels measured in the
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experiment, Figure 3.14 indicates that the steps indeed correspond to the numbers of

vortex rows moving in the channel.

Figure 3.14: The number of vortex rows n, in a mode-locking measurement from Kokubo et al.

[50]. V1/f in units Φ0 versus magnetic field µ0H . Two rf frequencies were measured, f = 6 MHz

(dot) and f = 60 MHz (square). (from Kokubo et al., 2002, p.247004-3)

Figure 3.15: A phase diagram for a vortex melting from Besseling et al. [51]. Dynamic ordering

frequency at B = 1.16 T as function of the temperature. Fitted with fc ∼ (Tm,e − T )−1, where

Tm,e = 2.011 K is indicated by the dashed line. (from Besseling et al., 2003, p.177002-3)

The mode-locking technique can be used as a powerful tool for studying the dy-
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namic melting of confined vortex matter moving in disordered, mesoscopic channels

[51]. In the article by Besseling et al., the authors discovered that the melting line

was very sensitive to the mode-locking frequency, i.e., the average velocity. A phase

diagram with a coherent, plastic, and fluid flow was presented, which characterized

the divergence of the ordering velocity upon approaching the equilibrium melting line,

as shown in Figure 3.15.

3.4 Conclusion

In this chapter, I have introduced various implementations of periodic pinning arrays

as well as the corresponding theoretical work including arrays with nanoscale holes

and magnetic dots in superconducting films acting as vortex traps. Periodic pinning

experiments beyond the simple periodicities of the initial measurements have been

presented as well. Later in the chapter, I reviewed the previous work on weak-pinning

channels in the P.H. Kes’ group at Leiden University. Here a relatively large field was

applied to the channels, and the vortex lattice in the strong-pinning NbN channel edge

played an important role in influencing the vortex distribution in the a-NbGe weak-

pinning channels. The experiment results were presented, including the fabrication,

the studies of commensurability, mode-locking and dynamic melting. In the next

chapter, I will introduce the ratchet in general, then review previous work on vortex

ratchets. The implementations and simulations of ratchet effects will be covered.



Chapter 4

Superconducting nanostructures

with asymmetric pinning

potentials: vortex ratchets

4.1 Introduction

The possibility of producing directed motion from a spatially asymmetric potential

energy landscape in response to an external drive or non-equilibrium fluctuations

with zero mean has inspired many investigations into a variety of ratchet systems

[55–59]. Such ratchets could be used as pathways for producing a net transport of

matter at the nanoscale. In addition, artificial ratchets can serve as model systems

for understanding similar ratchet phenomena in biological systems while allowing for

experimental control over many of the ratchet parameters [60–63]. Recent advances

in nanofabrication make it feasible to investigate similar ratchets based on solid-state

systems. Thus, ratchets allow for the exploration of the fundamental nature of particle

transport at the nanoscale, both in solid-state devices and biomolecular systems.

With solid state ratchets, the nanofabricated nature of the devices makes it pos-

sible to control the various ratchet design parameters. The operating conditions can



4.1 Introduction 34

also be adjusted, such as the temperature, the waveform, the frequency of the driving

force, and particle density so that one can move between regimes of independent and

strongly interacting vortices. Thus, such fabricated ratchets can be used to study

the rectification of vortex motions in asymmetrical potentials over a wide range of

parameter space.

Over the past decade, implementations of ratchets in solid-state devices, including

asymmetric structures of electrostatic gates above a two-dimensional electron gas [64],

arrays of Josephson junctions with asymmetric critical currents [65], and microfluidics

systems [66] were studied by groups around the world. Structures have also been

developed for producing a ratchet effect with vortices in superconducting thin films

involving either asymmetric arrangements of pinning centers [67, 68] or asymmetric

magnetic pinning structures [69, 70].

In this chapter, I will introduce the ratchet in general and then focus on the imple-

mentations of the vortex ratchet in superconductors. More comprehensive discussions

on ratchets can be found in the recent reviews by Reimann et al. [56] and Hanggi et

al. [55].

4.1.1 Rocking ratchet

A generic ratchet consists of a system with an asymmetric potential energy surface.

One such ratchet can be realized with a system in which the periodic potential has

a broken parity symmetry [71]. The state of the ratchet can be described with a

Langevin equation of the form

ηẋ(t) = f(x(t)) + ξ(t) + F (t), (4.1)

where η is the the flux-flow vortex viscosity (Eq. 2.11), f(x(t)) ≡ −∂xV (x), represents

the potential, ξ(t) is Gaussian noise with strength 2ηkBT and F (t) is the driving

force. A system consists of the tilt ratchet potential with a zero-mean drive, usually

referred to as a ‘rocking-ratchet’ [56], where a spatial asymmetry is engineered into
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the potential energy V (x) landscape governing particle motion; an external control

variable can be adjusted to tilt this potential.

(a)

(b)

Figure 4.1: A schematic of sawtooth potential surface and the basic mechanism of rocking ratchet

from Astumian [60] (a) A simplified potential surface for sawtooth structures. The well period is

labelled by L. (b) The basic mechanism of a rocking ratchet with oscillatory driving force Fmax.

(from R. Dean Astumian, 1997, p.917)

Models of anisotropic periodic potential were given in Ref. [60]. The typical

anisotropic periodic potential U(x) is illustrated in Fig. 4.1. A rocking ratchet can

be achieved by applying a fluctuating or oscillating force. As shown in Fig. 4.1(b),

the potential energy decreases monotonically when it is tilted to the left, whereas

remained minima in the potential will trap particles when it is tilted to the right.

Thus, an alternative between ±Fmax will cause a net flow of the particles towards

the left. As noted in Astumian, a net flow cannot be generated in a rocking ratchet

when the oscillation frequency reaches a limit; the particles cannot respond to the

force quickly enough in order to move to the next well before the force reverses sign

[60].
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A system governed by the law of detailed balance does not produce rectification of

thermal fluctuations at thermal equilibrium [26, 55, 60]. Both spatial asymmetry of

the potential energy and nonequilibrium are required for a ratchet. An external force

can break the thermal equilibrium of such a device and make it a nonequilibrium

problem.

The promising applications in nanotechnology, as discussed in the beginning of

this chapter, have generated much attention. The controlling of vortex motion in

superconductors provides great possibilities for implementations of various vortex

ratchets.

4.2 Survey of vortex ratchets

As discussed in Chapter 3, the motion of the magnetic flux trapped in the supercon-

ductors can limit the performance of the devices by ways of energy dissipation and

internal noise [72]. Methods that are considered to overcome this issue include the

pinning of vortices by artificial pinning sites and defects, as discussed in Chapter 3,

in which submicron pinning holes/antidots and magnetic dots were nanofabricated

in the superconducting films. With different configurations of pinning arrays, strong

commensurabilities have been studied both theoretically and experimentally. But the

ideal way to over come the issues caused by the presence of vortices would be to re-

move the vortices from the bulk of the superconductor. With the implementation of

vortex ratchets in the superconductor, vortices can be guided in the desired direction

as the oscillation force is applied to the system.

A rocking ratchet with 1-D asymmetric pinning potential was studied theoreti-

cally by Lee et al. [73]. The system consists of superconductors in which surface

thickness varies periodically so that the pinning potential is primarily determined by

the gradient of the ratchet potential U(x) (Fig: 4.2). The potential energy gradient

was largely caused by the variations in vortex line energy due to the thickness change
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Figure 4.2: A diagram of a surface thickness ramp ratchet from Lee et al. [73]. An external

magnetic field H is applied to the asymmetric potential ratchet ramp, Lorentz force is generated by

applying J along the y direction moving the vortices with a net flow in the x direction. (from Lee

et al., 1999, p.337)

[74], where vortices had lower energy at thinner regions. The implementation of such

structures in the experiments is difficult due to issues in fabrication.

4.2.1 Antidots

As discussed in Chapter 3, antidots (nanoscale pinning holes) can be used for con-

trolling vortex motion in superconductors. With different shapes and configurations

of the antidots, a vortex ratchet can be realized for the removal of unwanted trapped

flux in devices. The net dc-voltage Vdc is expected to be antisymmetric when the

external field Ha is inversed due to the Lorentz force changing sign with an inversed

Ha while the spatial asymmetry remains the same.

An array of asymmetric pinning wells has been studied both numerically and

analytically by Zhu et al. [75]. The asymmetric traps were constructed by arrays of

two square antidots, where two different sized square holes were placed next to each
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other with a separation less than the lattice constant. This provided a sawtooth-type

potential surface for the vortices. The net transport of the vortices was shown in

the simulation results when a square wave ac-drive was applied to the system. The

dependence of the ratchet rectification signal on other parameters, such as the driving

amplitude, was studied in this article (Fig. 4.3), where we can see an optimum force

amplitude (FL ∼ 0.4) and a optimum vortex density (H = H1).

Figure 4.3: Molecular dynamics simulation results of the vortex ratchet Vdc response from Zhu et

al. [75]. Vdc as a function of ac-driving amplitude FL is shown with a different applied magnetic

field. H1 is the first matching field with approximately one vortex per pinning well. (from Zhu et

al., 2003, p.014514-6)

The ratchet effects induced by asymmetric antidots have been studied experimen-

tally by Van de Vondel et al. [76]. Antidots with small and large square submicron

holes were nanofabricated in an Al film. The net dc voltage was observed by applying

an ac current in the film with the magnetic field applied perpendicular to the super-

conductor surface (Fig. 4.4) [76]. The high symmetry of the vortex configuration at

the first matching field (H1) cancels out the vortex-vortex interactions, which caused
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the largest voltage difference at fields just below H1 [76]. Varying temperature did

not show much difference in the inertia and the rectification features, although the

experiment needed to be performed just below Tc in order to avoid the background

pinning in the film from dominating the asymmetric antidot potential [26]. As dis-

cussed earlier in this chapter, the maximum Vdc did show a change in temperature,

but the reasons were not fundamental to ratchet physics.

Figure 4.4: Contour plot of ratchet rectification measured at a field near or smaller than the first

matching field from Van de Vondel et al. [76]. Net dc voltage response as a function of a normalized

field H/H1 and Iac; Inset, an atomic force microscope image of the asymmetric antidots. (from Van

de Vondel et al., 2005, p.057003-1/2)

The authors had increased the rocking frequency from 1 kHz up to 10 kHz, and

had seen no significant change in the Vdc response. This suggests that the experiment

was carried out deeply in the adiabatic regime [56].

In fact, all of the vortex ratchets were measured deeply in the adiabatic regime.

As discussed earlier, the ratchet rectification is expected to vary with frequency when

the frequency reaches a characteristic limit. In general, this frequency limit can

be characterized by three critical scales in the case of a rocking ratchet: the driving

frequency applied to the ratchet, the thermal and noise activation rate of the vortices,
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and the ratio of the vortex velocity to the ratchet spatial period. In the recent

experiments, with the experimentally attainable frequencies applied to the ratchets,

no results show any ratchet variation. Evidences of ratchet signal variations with

the temperature were found in other experiments, such as in the study of de Souza

Silva et al. [77]. The changes in the ratchet signal were mostly due to the changes

of the superconductor parameters with varying temperatures, but not caused by the

thermal activation expected for a general Brownian motor [78]. Thus, the thermal

and noise fluctuations do not play a significant role either. The ratchet spatial period

is usually in the scale of a few micrometers. And the vortex critical velocity, where

a superconductor switches to the normal state, is in the range of hundreds of meters

per second in thin film superconductors [17]. This indicates the maximum frequency

that can be achieved is ∼ 108 Hz, without considering the practical experimental

limitations. Any frequency that is smaller than ∼ 108 Hz will drive the vortex past

at least one ratchet period.

A surprising hysteresis was experimentally observed in the measurements. The

vortex effective mass should not play a role in this particular measurement regime

since the vortex effective mass was small enough that an inertia would require the

oscillation frequency to be above 1012 Hz [12, 76]. The inertial effect in the IVC

[Fig. 4.5(Inset)] was indeed induced by the vortex deformation. Molecular dynamics

simulations based on an underdamped ratchet model were applied to the measure-

ment results, proving the behavior of the so-called inertia ratchets (Fig. 4.5). This

hysteretic response of the vortices can be characterized by a delayed re-trapping force

[Fig. 4.5(Inset)], which was due to the distortion of the vortex core by the antidot

structure [76, 77].

A detailed description of the simulation was presented by de Souza Silva et al.

[77], where the vortex ratchet effects due to the pinning potential induced by the

asymmetric antidots were shown in a similar fashion. The interplay between the

1D motion of weakly pinned incommensurate vortex rows and the 2D motion of the
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Figure 4.5: Vdc response of an inertia ratchet from Van de Vondel et al. [76]. Normalized dc voltage

as a function of ac current amplitude, and the fitting line is the molecular dynamics simulation

results. Samples were measured at T/Tc = 0.973 and H/H1 = 0.98. (Inset) Simulation results of

v(t) with dashed lines show that the repinning force is smaller than the depinning force. I, II, III,

IV are four regimes of vortex motion, explained in the text. (From Van de Vondel et al., 2005,

p.057003-3)

vortex lattice at the field just bellow the first matching field (H1) presented two

rectification peaks in the Vdc(Iac) characteristics (Fig. 4.6), which was modelled by a

molecular simulation. The four different regimes of vortex motion illustrated in the

Figures (both Fig. 4.5 and Fig. 4.6) are: I) a fraction of vortices is moving in the easy

direction; II) all vortices are moving in the easy direction; III) in addition to (II), a

fraction of vortices are moving in the hard direction; IV) all vortices are moving in the

easy and hard directions back and forth, resulting in the long tail observed in both

the measurement and simulation results [77], which indicates a reduced effectiveness

of the ratchet.

The temperature dependence of the ratchet signal was reported by de Souza Silva

et al. (Fig. 4.7). An optimum temperature corresponding to the maximum of Vdc

was observed at T ≃ 0.982Tc. Vdc decreased monotonically on both sides of this
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Figure 4.6: Vdc showing two rectification peaks at the field just below H1 from de Souza Silva et

al. [77]. Normalized dc voltage as a function of driving amplitude. I, II, III, IV are four regimes of

vortex motion, explained in the text. (from de Souza Silva et al., 2006, p.014507-7)

temperature. As discussed in Chapter 2, the vortex size largely increases with the

temperature approaching the critical temperature. In this case, the vortex size was

too big when compared to the size of antidots, and the vortices could not sense the

detail of the antidots; thus, a decrease in the effectiveness of the asymmetric potential

occurred. At a low temperature, the thermal and noise fluctuations were relatively

small so that the vortices were more sensitive to the background pinnings in the Al

film, which led to a reduction in the asymmetric rectification. Even though, we can

see that the temperatures are all very close to Tc. In fact, all the antidots vortex

ratchets are required to operate near Tc in order to avoid background pinning.

Vortex ratchets implemented with submicron antidots were also studied in YBa2Cu3O7

thin films with resistive Hall-type measurements by Wordenweber et al. [79], and with

scanning Hall probe microscopy by Crisan et al. [80].
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Figure 4.7: Temperature dependence measurements in a vortex ratchet with antidots arrays from

de Souza Silva et al. [77]. Vdc versus driving amplitude for different temperatures as indicated in

the figure. All measurement were performed at H/H1 = 0.95 with driving frequency f = 1 kHz.

Inset, the maximum Vdc vs. T/Tc. (from de Souza Silva et al., 2006, p.014507-3)

4.2.2 Asymmetry in pinning density

Motivated originally by an experiment carried out by Kwok et al. [81], Olson et

al. proposed a geometry where a graduated density of antidots were periodically

arranged in superconductors [82]. The pinned vortices created an asymmetric effective

potential, and the rectification corresponded to the motion of the unpinned interstitial

vortices. The numerical simulation shows that the system has a net transport of the

vortices for H/H1 > 1 (Fig. 4.8) [82].

Triangular arrays of boomerang shaped pinning sites in superconductors were

studied numerically by Zhu et al. [83]. The simulation results shows a net transport

voltage when an ac driving force is applied to the system. By arranging two sets of

boomerang arrays pointing towards each other, the molecular dynamics simulation

resulted a lensing effect, where the vortex density increases at its “focus” region [83].
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Figure 4.8: Simulation of the net dc voltage as a function of vortex density from Olson et al. [82].

The dependence of < Vx > on the ratio of the votices to pins Nv/Np shows the net motion of vortices

only appears after the field exceeds the first matching field. Nv and Np are the number of vortices

and pinning sites. (from Olson et al., 2001, p.177002-3)

Similar to the results presented in Olson et al. [82], Zhu et al. only observed a

net transport of the vortices when H/H1 > 1, and a maximum in dc velocity at

H/H1 ≈ 2.

Figure 4.9: Schematic and calculated potential landscape of arrow-shaped pinning lattice from

Togawa et al. [68]. (a) A schematic with dots represent the pinning site; (b) Calculated potential

distribution with an energy landscape along the center line of the contour plot. (from Togawa et al.,

2005, p.087002-2)
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The idea of boomerang shaped pinning arrays for guiding vortices in superconduc-

tors was experimentally implemented by Togawa et al. [68]. However, the boomerang

shape is the pathway for interstitial vortices in this case (Fig. 4.9). The pinning sites

were fabricated by focused gallium ion beam (FIB) irradiation on a Nb supercon-

ductor. The arrow-shape wedged cages were referred to as microscopic “funnels” for

vortex motion [68], which was directly imaged by Lorentz microscopy [84] unlike most

other experiments where transport measurements were performed instead. The vor-

tices were driven by applying an oscillatory field to the Nb film (Fig. 4.9). The field

was varied between 15 Oe and 30 Oe at a rate of ∼ 0.2 Oe/s. Both open-ended and

closed-loop arrow-shape wedges were imaged by Togawa et al.. In the open-ended sys-

tem, vortices were introduced in the ‘racetrack’ from a flux reservoir, and the number

of vortices in the ‘racetrack’ is a variable. A cyclical motion of fixed-number vortices

was demonstrated in the closed ‘racetrack’ [68].

4.2.3 Magnetic dots

Using magnetic dots in superconducting film as the pinning center and the nature of

its pinning mechanism was discussed in Chapter 3. Within such systems, magnetic

dots, normally Ni or Co, were nanofabricated either under or above the supercon-

ducting films [33, 85].

Square arrays of triangular shaped Ni dots with spatial asymmetry on top of

superconducting Nb films were studied by Villegas et al. [69, 86]. The triangular dots

have an in-plane aligned magnetization. The amplitude of the magnetic field applied

in the experiment is always smaller than the magnetic field required to change the

in-plane magnetization, which ensured that the magnetization remained invariable.

As shown in Fig. 4.10, net dc voltage was observed when an ac-current was applied

along the x-axis at the first matching field. The frequency dependence of the net

dc voltage was also studied. Increasing the frequency to the highest attainable value

(10 kHz) proved a pure adiabatic experiment [86].
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Figure 4.10: Measurement of Vdc as a function of the driving current from Villegas et al. [86]. Vdc

vs. Iac showing a maximum in net dc voltage response as a function of driving amplitude. Inset, a

schematic of the square array of Ni dots. (from Villegas et al., 2005, p.024519-2)

The interaction between vortices in a thin superconducting film and magnetic

dipoles were investigated by Silhanek et al. [87] and de Souza Silva et al. [70], which

were related to an earlier model proposed by Carneiro [88]. In the model by Carneiro,

instead of using magnetic dots with permanent magnetization, one magnetic dot with

nonpermanent magnetization was placed near a vortex and the interaction between

both was simulated. With the possibility of rotating the dipole magnetic moment,

the pinning potential generated by the magnetic dots can be tuned by applying an in-

plane magnetic field, and the spatial asymmetry in the system is attributed primarily

to the vortex-magnetic-dipole interaction [88].

In the experiment by de Souza Silva et al., two types of periodic arrays of in-plane

magnetized dipoles were fabricated, including a square array of magnetic bars and

a close-packed square array of equilateral triangular Co rings. A nonsuperconduct-

ing layer was included between the superconducting and the micromagnet arrays to

minimize proximity effect [70]. Unlike other vortex ratchet described earlier, where
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Figure 4.11: Net dc voltage response as a function of H and T for sample with triangular Co

ringlike magnetic dipoles from de Souza Silva et al. [70]. Vdc response in the T −H plane for two

different magnetic dipole orientations, m = +y (a) and m = −y (b). (from de Souza Silva et al.,

2007, p.117005-2)

antisymmetric dependence of Vdc is expected when the external field Ha is inversed,

a symmetric response of Vdc was observed as the Ha (H in this article) was reversed,

but only for |Ha| > H1 (Fig. 4.11) [70]. This symmetric dependence of Vdc on Ha was

caused by the cancellation between the inversed Ha and the corresponding reversal of

the asymmetric potential, which was a non-variable in the case of spatial asymmetric

potential as discussed in other ratchet implementations. As shown in Fig. 4.11, the

antisymmetric dependence of Vdc at a field near or smaller than H1 was observed for

both magnetic orientations (m = ±y), suggesting that asymmetric pinning potential

in this field region was dominated by a nonmagnetic ratchet potential as those gen-

erated for instance by small asymmetries of the triangles due to fabrication issues
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[70].

4.2.4 Ratchet reversal

The ability to reverse particle drift directions in a ratchet system was studied in Ref.

[56] and [55]. A simulation particularly for a rocking ratchet by Bartussek et al. re-

sulted reversal effects [78]. The theoretical study of overdamped Brownian particle

interactions carried out by Derényi and Vicsek shows a reversal of the ratchet recti-

fication direction as particle density was increased [89]. The topic of separating two

interacting species of small particles has been studied both analytically and numer-

ically by Savel’ev et al. [90–94], which can be a potential application of the ratchet

reversal effects.

E F

G H

Figure 4.12: Vortex reversals variation with the vortex density and the driving amplitude from

Villegas et al. [95]. (A to D) Net velocity as function of Lorentz force amplitude for four different

vortex densities as indicated by n; (E to H) Schematics of vortex distribution at corresponding

vortex density. The red arrows indicate the vortices hopping between triangles, therefore showing

the original ratchet direction, whereas the blue arrows indicate the motion of interstitial vortices,

therefore showing the reversal ratchet direction. (from Villegas et al., 2003, p.1190)

The vortex ratchet with arrays of triangular magnetic dots fabricated in a Nb

superconducting film was studied by Villegas et al. [86, 95] as described earlier.

In addition to the vortex ratchet that drives vortices in the original direction at
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relatively small fields, the ratchet reversals were observed at H > 3H1 for a small

driving amplitude (Fig. 4.12) [95]. The vortices were expected to be pinned in the

magnetic triangles at H ≤ 3H1, so that the vortices underwent movement in the

original ratchet direction by hopping between the triangular pinning sites. Increasing

the field further, subsequent vortices appeared in the interstitial locations between the

magnetic triangles, where they experienced the asymmetry potential that was induced

by vortices pinned in the magnetic islands. This secondary potential is reversed

compared to the original one. Thus, a reversal dc signal appeared at the low drives

when the more weakly pinned interstitial vortices moved, and the ratchet recovered its

original direction for large drives, where the vortices were depinned from the magnetic

islands that were moving in the original direction [95]. The process is summarized in

Fig. 4.12.

Figure 4.13: Multiple ratchet reversals simulated as a function of temperature and field from de

Souza Silva et al. [96]. Simulation results showing multiple ratchet sign inversions. The green and

red areas correspond to positive and negative Vdc respectively. The white region represents Vdc = 0.

(from de Souza Silva et al., 2006, p.652)

Based on the configuration of antidots studied by Van de Vondel et al. [67] and

de Souza Silva et al. [77], de Souza Silva et al. [96] investigated the ratchet reversals

in such system. Unlike previous experiments, where the vortex ratchet were observed
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at fields small or less than the first matching field, ratchet reversals, on the other

hand, were observed alternating with conventional ratchet at fields near and larger

than 2H1 (Fig. 4.13). This differs from the study on ratchet reversals reported by

Villegas et al. [95], where the reversal was due to the effect of interstitial vortices

moving in an inverted ratchet potential; the ratchet reversals in this case were caused

by subsequent vortices trapped in the large and small holes alternatively with the

field progressively increasing after the first matching field [95].

Based on the same geometry, a thickness-modulated surface ramp ratchet pro-

posed by Lee et al. [73] showed the reversal effects in the vortex ratchet that were

observed at higher vortex densities by Lu et al. via numerical simulations [97]. The

ratchet reversals were explained by a 2D description of the vortex configuration as

a function of vortex density despite the 1D ratchet geometry. The depinning force

was observed to be lower in the hard direction at the intermediate vortex density,

which resulted in the ratchet reversals due to the weak intervortex interactions. An-

other reversal appeared in the simulation results with a further increase in the vortex

density. The mechanism of the sign reversal was explained by the different phase of

the vortex lattice. A conventional ratchet response was expected when the vortex

configuration was highly ordered, whereas a ratchet reversal was observed when the

vortices formed a smectic or a disordered phase where the intervortex interactions

were no longer negligible [97].

When Related to the simulation by Lu et al., ratchet reversals due to the strong

intervortex interactions and the vortex positional disordering were studied by Gilli-

jns et al. experimentally [98]. In this experiment, an array of Co/Pt magnetic dots

fabricated in superconducting Al film was investigated with standard transport mea-

surements. The authors proved that the vortex reversal was determined by both the

intervortex interaction and more importantly by the effective interaction distance,

which was characterized by the penetration depth λ in the case of the vortex ratchet.

Four samples with different asymmetric pinning potential periods d were studied. For
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λ < d, the motion of the vortex was drifting toward the conventional ratchet direc-

tion. The ratchet sign reversal was detected when the effective interaction distance

was longer than the ratchet potential period, λ > d.

4.3 Conclusion

The concept of the ratchet was introduced in the beginning of the chapter, followed

by an introduction of generic rocking ratchets along with its basic characteristics. An

survey of other approaches for the vortex ratchets using nanostructured supercon-

ductors were presented. Almost all of the vortex ratchets with artificial pinning sites

were required to operate at temperatures very close to the superconductor transition

temperature in order to avoid the background pinning from getting too large. Al-

though the generic ratchets are expected to become less effective when the frequency

is higher than a characteristic limit, the vortex ratchet measurements were performed

almost always deeply in the adiabatic state, where the frequency is far bellow the limit

so that the variation of the frequency does not play a significant role in influencing

the effectiveness of the ratchet rectification. Our measurements of the vortex ratchet

effects in the superconducting weak-pinning channels with periodic constrictions will

be presented and discussed later in the thesis.
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Chapter 5

Fabrication and measurement

scheme

5.1 Sample fabrication

Nanofabricated weak-pinning channels were studied by a group at Leiden University

for an extended period of time as we discussed in Chapter 3 [47].

(a) (b) (c)

sputter bilayer etch channel introduce vortices

��� ��	�ong pinning)
NbGe (weak pinning)

Figure 5.1: Weak-pinning channel fabrication schematic on a bilayer superconducting film.

Such channels are fabricated from bilayer films of amorphous-NbGe, an extremely

weak-pinning superconductor, and NbN, with relatively strong pinning [Fig. 5.1]. In

the range we had measured, TNbGe
c ≈ 2.90 K, TNbN

c ≈ 10 K. A reactive ion etching

process removes the NbN from regions as narrow as 100 nm, defined with electron-
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beam lithography, in order to produce weak-pinning channels through which vortices

can move easily. In contrast, the vortices trapped in the NbN banks outside of the

channels remain strongly pinned. The lack of pinning allows the vortices to move

through the channels, with the dominant interaction determined by the shape of the

lithographically-defined channel walls. In the various channel experiments discussed

in Chapter 3, the interactions between the vortices in the NbN banks and those in the

channels play a key role in the dynamics [99]. A typical sample with wire-bonding

pads is shown in Fig. 5.2.

5 mm

(a) (b)

Figure 5.2: (a) A schematic showing 6 sets of weak pinning channels on the superconducting strips.

The voltage leads connect the strips with wire-bonding pads symmetrically to both sides across the

strip. The line width at the connections to the strips is ∼ 5 µm-wide. (b) A zoom on the Scanning

Electron Microscope(SEM) image of voltage leads where they connect to the strips.

The channels are arranged across a strip, with Ha oriented along the thin axis

of the strip (Fig. 5.3). The strip pattern contains pairs of probes for coupling with

a room-temperature low-noise amplifier used for sensing the voltage drop V along

the strip due to the vortex motion through the channels. A transport current driven

through the strip with an external supply generates a transverse Lorentz force on the

vortices. Between each pair of voltage probes is an array of identical channels with

inter-channel spacing s. We can tailor the confining potential for the vortices in the
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channels by controlling the shape of the channel walls. There are three categories of

channels we measured: 1) uniform channels with a constant width; 2) ratchet channels

with asymmetric sawtooth patterns; and 3) diamond channels with a periodic chain

of cells defined by diamond-shaped constrictions. Normally, the period along the

channel in the last two categories is defined with parameter p. The ratchet cell or

diamond cell can also be characterized by the half-width with a parameter b.

(a)

(b) (c)

b b

Figure 5.3: (a) Schematic of the strip with ratchet channels showing sample parameters; in this

case, channel spacing s = 10 µm and strip width w = 50 µm. (b) SEM image of a ratchet channel

cell. (c) SEM image of a diamond channel cell.

5.2 Transport measurements

We generate Ha with a superconducting Helmholtz coil, and a µ-metal shield reduces

the background magnetic field below 13 mG. For each measurement sequence, the

strip was heated to at least ∼ 15 K, well above the Tc of both the NbGe and NbN

films. The strip was then cooled in Ha = 0, while we subsequently increased Ha to the

measurement temperature. All of our measurements were performed with the strip

immersed in a pumped helium bath with a temperature stability of ∼ 0.2 mK/hr.
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As discussed in Chapter 2, if vortices are present in a type-II superconductor in

the absence of any bulk pinning or entry barriers, an applied current drives vortices

causing dissipation [6]. Usually the voltage has a linear dependence over the current

at this flux flow regime. If the current is continuing to be increased, the voltage

dependence can deviate from a linear flux flow slope so that voltage can increase

more quickly. This curvature in the IV curve will quickly reach an instability with

an increase of the current, due to the increasing dissipation. This instability switches

the sample out to the normal resistance state, causing the sample to become non-

superconducting [14].

This critical current characterizes the transition from a static state to the dynamic

flux flow regime. The transition can be defined by measuring the critical current

Ic in the conventional way. This can be done by monitoring the current-voltage

characteristics (IVC), which are proportional to the vortex velocity and density, then

applying a 1µV criterion. The room temperature pre-amplifier - Stanford SR560

has a noise of Vnoise ∼ 4 nV/
√
Hz. With the low-pass filter bandwidth we used,

∆f = 30 kHz, the RMS Voltage Vrms = Vnoise
√
∆f ≈ 0.7 µV [100]. This is the main

reason we chose this criterion for measuring the critical current. 1µV is large enough

to exceed the general noise floor and at the same time is not too large, therefore, the

critical current extracted characterizes the transition of vortex motion correctly.

(a)

(c)

(b)

Ic = 0.24 mA

Figure 5.4: (a) A sinusoidal current drive I(t). (b) V (t) for 2 µm-wide uniform channels; Iac =

0.59 mA. (c) IVC for 2 µm-wide uniform channels plotted with positive and negative branches in

the first quadrant for comparison. We extract Ic with a 1µV criterion.

We drive the vortices with 200 cycles of a bias current sinusoid at 210 Hz, then
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average the resulting voltage response in order to obtain a V (t) curve for one period

(Fig. 5.4). We can see that the noise level on the IVC at the static state is much

smaller than 0.7 µV as we estimated above due to the averaging, which gives ∼
√
200 ≃ 14 times a better signal to noise ratio.

We combine this resulting V (t) curve with I(t) to obtain IVC, where we apply

the 1µV criterion for extracting the critical current[Fig. 5.4(c)].
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Chapter 6

Vortex dynamics in weak-pinning

channels with periodic

constrictions

6.1 Introduction

Vortices, confined to superconducting easy flow channels with periodic constrictions,

exhibit reversible oscillations in the critical current when vortices begin moving as

the external magnetic field is varied. This commensurability scales with the channel

shape and arrangement, although screening effects play an important role. For large

magnetic fields, some of the vortices become pinned outside of the channels, leading to

magnetic hysteresis in the critical current. Some channel configurations also exhibit

a dynamical hysteresis in the flux-flow regime near the matching fields.

In this chapter, I describe measurements of vortex dynamics in weak-pinning

channels that contain periodic constrictions at small magnetic fields, generally less

than 10 Oe. Thus, this involves considerably smaller fields than much of the previous

work on vortex matter in unstructured weak-pinning channels [48, 50, 51]. The nature

of the channels provides pathways for the easy flow of vortices, while the lattice of
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(a)

Figure 6.1: (a) Scanning electron micrograph of three channels with periodic diamond constrictions.

(b) Strip layout, including channel and magnetic field orientation.

periodic constrictions results in strong matching effects with substantial enhancement

of the critical current Ic at certain values of the external magnetic field Ha. Although

we do not image our vortex distributions directly, we can determine that over much of

the field-range of our measurements, all of the vortices are confined to the channels,

with the dynamics determined solely by the channel geometry, screening currents

in the film, and the interactions between vortices. Thus, in this field regime, there

is no distinction between pinned and interstitial vortices. At larger magnetic fields

Ha, the vortices can enter the regions outside of the channels where they become

strongly pinned and do not participate in the flux-flow. Rather, these pinned vortices

alter the potential for the vortices that are confined to the channels and lead to an

irreversibility of Ic(Ha).

6.2 Channel configuration

We fabricated our channels as described in Chapter 5.1. The channels are arranged

across a 50µm-wide strip, with Ha oriented along the thin axis of the strip (Fig.

6.1). Each channel contains a periodic chain of cells defined by diamond-shaped

constrictions, all of which are 3.2µm across at the widest point and 700 nm wide

at the constriction, with a period along the channel p. We measured sets of such
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channels with five different combinations of (s, p) (Table 6.1).

sample label period(µm) spacing(µm)

d1 0.5 20

d2 1 20

d3 2 5

d4 2 20

d5 2 50

Table 6.1: Diamond constriction samples with five different combinations of (s, p).

We perform our measurements with the strip immersed in a pumped helium bath.

Our results presented here were obtained at a temperature T between 2.61 K and

2.90 K (89% − 99% of TNbGe
c ). We can apply the standard dirty-limit expressions

(Eq. 2.7 – 2.8) in order to estimate the relevant superconducting parameters of the

a-NbGe and NbN films.

For the a-NbGe, the coherence length ξ varies between 20− 80 nm over the range

of T ; thus, the vortex core size is always much less than the smallest dimension of

the channels, and the vortex cores are essentially point-like. On the other hand, the

penetration depth is relatively large, and the thin-film screening length, λ⊥ = 2λ2/d,

where d is the film thickness, which ranges between 40− 370µm for the a-NbGe.

In the NbN that forms the banks between the channels, λNbN
⊥

≈ 8µm, there is

little temperature variation since T/TNbN
c ≪ 1 [101].

Thus, the circulating currents for a vortex in a NbGe channel extend along many,

if not all, of the diamond cells in that particular channel and penetrate roughly 8µm

into the NbN banks on either side of the channel. Because λNbGe
⊥

is much greater than

both λNbN
⊥

and the width of the channels, vortices will be confined to the channels.

The shape of the channel walls will thus play an important role in distorting the

circulating currents around each vortex.
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6.3 Edge barrier effects on critical currents

As described in Chapter 5, we measured Ic, where the vortices move from a static

configuration to a dynamical sliding state by applying a 1 µV criterion to IVCs.

Measurements of the field dependence Ic(Ha) yield information about the vortex

dynamics in the channels. For purposes of comparison, we fabricated a set of 0.5 µm-

wide uniform channels such that there were no constrictions, and we measured Ic(Ha)

(Fig. 6.2). The response is similar to that of the characteristics of an edge barrier for

a thin, weak-pinning superconducting strip in a perpendicular magnetic field, where

the entry of vortices at the strip edge is determined by the distortion of the current

density across the width of the strip [102, 103].

For a standard edge barrier, Ic(Ha) follows two different regimes: for Ha near

zero, Ic decreases linearly with Ha, when vortices enter the strip at one edge and are

immediately swept across the entire strip width; and for a larger Ha, Ic ∝ H−1
a , where

the external magnetic field is large enough to push vortices into the strip, even for

transport current less than Ic.
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Figure 6.2: Ic(Ha) for uniform-width channels at low magnetic fields along with linear fit (dashed)

and H−1
a fit (solid), described with the edge barrier model. Hs is the field limit for the vortex entry

into the superconductor at I = 0

For a superconducting strip geometry in a perpendicular field, B will be somewhat

smaller than Ha due to screening effects until Ha ≫ Hs (Fig. 6.3), where Hs is
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the surface entry field [104]. Note that the average flux density B̄ is constant for

Hex < Ha < Hen, because the geometrical barrier prevents vortices from entering or

leaving the sample.

Figure 6.3: The edge barrier effect on the average flux density B̄ as a function of the applied

field Ha from Benkraouda and Clem [104]. B̄en and B̄ex are the critical entry and exit condition

respectively, and Hex < Ha < Hen is the constant-flux condition. (from Benkraouda and Clem,

1996, p. 5721).

In order to understand the edge barrier with more detail, let us consider a thin

superconductor strip with thickness d and widthW in the limit of d≪ W and d ≪ λ.

As shown in Figure 6.4, a perpendicular magnetic field Ha is applied along the thin

axis, and a transport current I is driven along the long axis of the strip. Vortices

can be introduced into the superconducting thin film when the current density at the

edge of the strip approaches the Ginzburg-Landau depairing current density jGL:

jGL = Φ0/3
√
3πµ0ξλ

2, (6.1)

where Φ0 is the flux quantum, Φ0 = h/2e. This condition corresponds to an instability,

where vortices start to nucleate at the edges of the strip, such that any increase in

the current density at the edge of the superconductor will cause vortices to flow into

the strip.



6.3 Edge barrier effects on critical currents 64

Ha

I
W

d

x

y

Figure 6.4: A schematic showing a magnetic field applied to a superconductor strip along the thin

axis, and a transport current applied along its long axis.

In this particular geometry, the current density varies only along the y-axis; there

is no variation along the x-axis by symmetry, nor is there variation along the z-axis

because of d ≪ λ. Thus, in the absence of bulk pinning, the critical current for

vortices to start flowing inside the superconductor can be determined through the

study of such edge barrier effects. In the range of the Meissner regime, there is no

vortex in the strip if the transport driving current is smaller than the critical current.

The current density along the strip, including contributions from the Meissner screen

current and the transport current, can be obtained by solving a 2D Maxwell-London

equation for superconducting films in a perpendicular magnetic field [102], [105],

but while avoiding the divergence of j(y) at the strip edge by making an analytic

approximation to numerical solutions

j(y) ≈ Hay

d
√

α[(W/2)2 − y2] + βλ
′

⊥
W

+
I

2dγ
√

(W/2)2 − y2 + δλ
′

⊥
W
, (6.2)

where the fitting parameters in the expression are given by:

α =
1

4
− 0.63

(W/λ
′

⊥
)0.5

+
1.2

(W/λ
′

⊥
)0.8

, (6.3)

β =
1

2π
+
λ

′

⊥

W
, (6.4)

δ =
2

π
+

8.44

W/λ
′

⊥
+ 21.45

, (6.5)

γ = arcsin
1

√

1 + 4δ
λ
′

⊥

W

. (6.6)
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It should be noted that there are two different conventions that exist in the literature:

The λ
′

⊥
= λ/d2 in Eq. 6.2, instead of 2λ/d2, which was first defined in Pearl’s original

1964 paper [20]. Having j reach jGL at the edge of the strip y = ±W/2, that is

j(W/2) = jGL, we can then plot j as a function of y from Eq. 6.2 using different bias

conditions, showing the current density distribution at either Hs for a pure magnetic

field [Fig. 6.5(a)] or Ic(0) for a pure transport current[Fig. 6.5(b)]. In Fig. 6.5, the

current density j(y) is scaled by jGL, whereas y is scaled by the half strip width W/2.
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Figure 6.5: Current density along the width (W = 50 µm) of the strip for (a) Meissner screening

current only, where current I = 0, magnetic field Ha = 1 Oe and (b) transport current only, where

current I = 10 mA, magnetic field Ha = 0. For both cases, λ
′

⊥
= 4 µm, temperature T = 2.78 K.

If we take the value of j(y) at the edge of the strip to be the Ginsburg-Landau

depairing current Eq. (6.1), where y = ±W/2, then the critical current that defines

the first vortex entering the strip can be described as:

Ic(Ha) = Ic(0)(1−
Ha

Hs

), (6.7)

where

Ic(0) = jGLd
√

λ⊥W/β (6.8)

is the critical current at the zero applied magnetic field, and

Hs = 2jGLd
√

βλ⊥/W (6.9)

is the field at which vortices enter the strip when the transport current I = 0 (Fig.

6.2).
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Eq. (6.7) describes a linear dependence of the critical current Ic on the applied

magnetic field Ha in the Meissner regime. In this regime, there are no vortices in the

strip for I < Ic, then when I exceeds Ic, vortices enter and are immediately swept

across the strip width, thus generating a flux-flow voltage. If there are any defects on

the edge, this vortex first entry field can be smaller [106], where the distortion in the

current flow pattern causes the current density in the vicinity of the defect to reach

jGL earlier.
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Figure 6.6: Critical current measurement of a NbGe strip showing the asymmetric vortex entry

condition caused by the asymmetry on the edge roughness. ± Ic correspond to the entry of vortices

from one edge or the other.

We measured a bare NbGe strip, which contained neither a NbN layer, nor any

features of channels. In a real sample, it is almost impossible to have identical edges.

The roughness of the strip edges will cause the vortices to enter the superconductor

more easily from one edge than the other. As shown in Figure 6.6, our measurement

results of a bare NbGe strip is consistent with the simulation conducted by Vodolazov

and Peeters in 2005 [106]. Not only is the critical current entry condition asymmetric

on two edges of the strip, but the measurement results also show an antisymmetric

dependence of the critical current on the magnetic field (Figl. 6.6).
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For larger Ha, the external field can be sufficient in pushing vortices into the strip,

even for I = 0. In the absence of any kind of bulk pinning, these vortices arrange

themselves in a static dome-shaped structure in the middle of the strip due to the

mutual repulsion of the vortices [103, 105]. Assuming the domelike flux distribution

extending from a to b, where a < b, it then can be characterized by [103]:

Bz(y) = µ0Ha

√

(x− a)(b− x)√
W 2 − x2

, (6.10)

where the author in [103] defined the strip width as 2W , from −W to W .

Figure 6.7: Flux-density and current density along the strip width from Benkraouda and Clem

[103]. (a) Bz(x) for initial penetration of magnetic flux in an applied field Ha = Hs/10, increasing

current I pushes the vortex dome toward the right edge, reaching the critical exit condition. (b)

corresponding current-density profiles Jy(x). (from Benkraouda and Clem, 1998, p.15105). Note: in

this figure, the current is applied along the y-axis, and the strip width along the x-axis is opposite

of the notations discussed in this chapter.

Figure 6.7 shows examples of such results. When fields are applied perpendicular

to the strip, and if there are any vortices inside the channels, they will be pushed by

the screening current to the middle of the channel and form a dome structure. This

process will leave two ends of the channel free of vortices, thus creating a vortex-

free region. This means there are no current flows inside the dome and there are no

vortices in the current-carrying regions at the edges of the strip.

When I 6= 0, the Lorentz force causes the dome to shift toward one edge, and the

Ic is reached when the self-field of the transport current plus Ha at the opposite edge
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overcomes the entry barrier to allow new vortices to enter. New vortices that enter

at the left edge of the strip are driven rapidly through the vortex-free region. These

vortices join the left side of the dome, and correspondingly push an equal number of

vortices out of the dome from the right side of the strip. As in the Meissner regime,

Ic decreases as Ha increases [Fig. 6.2(solid line)]. But in the vortex dome regime, the

field-dependence is given by [102]:

Ic(Ha) =
(jsd)

2λ⊥
2Ha

. (6.11)

Our measurement of the uniform channel sample essentially followed the behavior

of a standard edge barrier model as described above, particularly in a small field

region. Ic(0) and Hs for our uniform channels are not described quantitatively by the
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Figure 6.8: Ic(Ha) of a set of 0.5 µm-wide uniform channels on a 50 µm-wide strip, showing basic

edge barrier behavior at the small field (inset), and a commensurability effect at the larger field

(Ha ∼ 10 Oe).

simple edge barrier expression because the structure of our sample is not quite the

same as the uniform strip (i.e., no channels). Not only can the confinement of the

channel change critical current, but the difference of thickness at the edge can also lead

to distortion of the screening current, thereby influencing the field entry condition.

The confinement effects of the channels can play a role and lead to modifications of

Ic(Ha). We always see a slight increase in the critical current at larger Ha (Fig. 6.8),
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leading us to think that this is caused by the vortex commensurability effect in the

confined channels.

6.4 Critical current oscillation with controlling con-

finement

We extend our study from an unstructured weak-pinning channel to a periodic con-

striction weak-pinning channel as described in Section 6.2. One can expect that such

channel structures will influence vortex dynamics if the confinement from the channel

walls distorts the screening currents that circulate around each vortex; this circulation

will be different depending on the motion of the vortex through the channel.

6.4.1 Mkrtchyan model for calculating the potential energy

in a diamond cell

In the temperature range of our measurements, λNbGe
⊥

, the characteristic extent for

the screening currents around a vortex in a thin film is ∼ 40−370 µm for the a-NbGe

in the channels, is clearly much greater than the width of the channels, such that the

shape of the channel walls will play an important role in distorting each vortex.

The interaction of a vortex with the channel walls can be understood by consid-

ering the model of Mkrtchyan et al. for the interaction between a vortex and the

interface between two superconductors with different penetration depths [107]. For

our strips, the channel corresponds to the superconductor with the larger penetration

depth, while the NbN banks have the shorter penetration depth. According to the

Mkrtchyan model, a vortex in the channel will experience a repulsive interaction Ui

from the ith wall with a distance di, keeping the vortex in the channel,

Ui ∝
(

λ2NbGe − λ2NbN

λ2NbGe + λ2NbN

)

ln

(

λNbGe

di

)

. (6.12)
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If we consider a single vortex located in one of the diamond cells, we can make

a crude model of the potential energy landscape by summing the contributions from

the interaction of the vortex with each of the four walls of the diamond cell, ΣUi (Fig.

6.9).
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Figure 6.9: Contour plot of model potential for vortex interacting with diamond cell walls, showing

the potential energy is at it’s lowest point at the center of the diamond cell.

Assumptions in this calculation include the following: first, it does not account for

vortices extending beyond one cell; next, it does not treat the aperture at either end of

the cell; rather, the cell is treated as a complete diamond; finally, it does not deal with

the extended nature of the vortices in the thin-film Pearl regime. This calculation

is aiming to give a qualitative understanding of the interaction between vortices and

the channel walls. Complex simulations are required for quantitative, more accurate

demonstrations of such vortex dynamics and circulating current distribution.

6.4.2 Temperature variation

The presence of diamond-shaped constrictions in the channels results in pronounced

oscillations in Ic(Ha) on top of the edge barrier response (Fig. 6.10). Ic(Ha) for

the uniform channels does not show the same oscillations of the diamond-shaped

channels, although there is a broad increase in Ic around 7 Oe [Fig. 6.10(dashed)].

This is a typical feature that we have observed in most uniform-width channels, as
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was discussed in Section 6.3. For higher fields, the matching effects are reduced and

peaks are absent soon thereafter. This feature had been observed in both numerical

simulations [25] and in the experiments [108].
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Figure 6.10: Measurement of Ic(Ha) for p = 2 µm, s = 20 µm, T = 2.78 K for a complete field

cycle as described in the text (solid). (dashed) Ic(Ha) for 0.5µm-wide uniform channels (s = 20µm,

T = 2.78 K).

For this measurement, Ha was increased from 0 to 6.2 Oe, then reduced through

0 to −6.2 Oe, and finally returned to 0. The complete reversibility of Ic(Ha) for

this field-cycle indicates that all of the vortices are confined to the channels, as one

would expect from a reversible Ic(Ha) for a pure edge barrier. In contrast, if vortices

had entered the strong-pinning NbN, observation of hysteresis in Ic(Ha) would be

expected.

The oscillations in Ic(Ha) can be observed over a wide range of T [Fig. 6.11(a)],

with the relative height of the peaks increasing as T/TNbGe
c approaches 1. A Fourier

transform of the Ic(Ha) data [Fig. 6.11(b)] shows that the characteristic frequency of

these oscillations, ω0
H = 1/∆Ha, is independent of T in this range, indicating that
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the commensurability is determined primarily by the channel geometry.
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Figure 6.11: (a) Measurement of Ic(Ha) for p = 2 µm, s = 20 µm for different T as indicated,

scaled by corresponding Ic(0). (b) Corresponding Fourier transform magnitudes.

6.4.3 Channel shape variation

We have studied the commensurability in Ic(Ha) further by measuring a series of

channel samples with different values of the diamond cell length p and channel spacing

s.

Because each vortex corresponds to one Φ0 of flux (Φ0 ≡ h/2e), the change in the

flux density in the channel ∆Bch, that is required to add one vortex to each diamond

cell, will be determined by the area occupied by this flux(Fig. 6.12). For widely

separated channels (s≫ λNbN
⊥

), the flux will extend ∼ λNbN
⊥

into the banks on either

side of the channel, while along the channel, the relevant length for the flux is p.

Thus, one arrives at a rough estimate, ∆Bch ≈ Φ0/2pλ
NbN
⊥

. However, if s is not large

when compared to λNbN
⊥

, the resulting overlap between vortices in adjacent channels

will lead to an underestimate of ∆Bch.

Figure 6.13(a) shows Ic(Ha) at T = 2.78 K for p = 0.5, 1, 2µm, where all three sets

of channels had s = 20 µm. For smaller p, the dominant peaks in Ic shift to larger Ha,
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Figure 6.12: Schematic showing the vortex flux distribution in weak-pinning channels and the

relation to the matching conditions: (a) showing a single vortex extending over many cells along

the channel length and penetrating ∼ 8µm into the NbN banks on either side; (b) at the matching

field, with one vortex per cell, where the area occupied by one vortex can be estimated as 2λNbN
⊥

p;

(c) when channels are close by, the area occupied by one vortex will simply be p× s due to the flux

overlapping between adjacent channels.

although more complex oscillation patterns develop as well. Nonetheless, the Fourier

transforms of the Ic(Ha) data indicate that the lowest characteristic frequency in the

spectrum for each p, ω0
H , varies linearly with p [Fig. 6.13(b)]. This provides evidence

that the Ic(Ha) peaks are indeed related to a matching of the vortex distribution to

the constriction lattice.

In Figure 6.13(b) we see that ω0
H ≈ 0.6×∆B−1

ch , thus indicating a somewhat larger

∆Ha is required to achieve a particular ∆Bch. This is likely due in part to neglecting

the overlap between vortices (s = 20µm in this case), but is also related to the edge

barrier mechanism. As I discussed early in this chapter, B will be somewhat smaller

than Ha because of screening effects [104].

In the opposite limit, s ≪ λNbN
⊥

, vortices in adjacent channels will be highly

overlapping and the flux density required for a one-vortex change becomes ∆Bch ≈
Φ0/s p. We have varied the channel spacing s and observed the influence on Ic(Ha),

using s = 5, 20, 50µm with p = 2µm and T = 2.78 K for all three sets [Fig. 6.13(c)].

The peak structure shifts to a larger Ha for a smaller s, and the plot of ω0
H vs. s in
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Figure 6.13: (a) Ic(Ha) curves for strips with different p for s = 20 µm, T = 2.78 K; (b) p-

dependence of ω0

H ; dashed line = guide to the eye; dotted line has slope 2λNbN

⊥
/Φ0. (c) Ic(Ha)

curves for different s, with p = 2 µm, T = 2.78 K; (d) s-dependence of ω0

H ; horizontal dashed line

at 2pλNbN

⊥
/Φ0, dotted line has slope p/Φ0.

[Fig. 6.13(d)] follows the trends described above, indicated by the dashed and dotted

lines included in the plot. The s = 50µm data approaches the expected ω0
H for widely

separated channels, while the s = 5µm data is close to the limit of highly overlapping

vortices. In both cases, a reduction in ω0
H somewhat below ∆B−1

ch can be expected

because of the edge barrier. A detailed calculation of the flux distribution in the

channels that accounts for the channel structure, the two different superconductors,

and the strip geometry is beyond the scope of this thesis.

We also measured samples described above at multiple temperatures, as shown

in Fig. 6.14. Although more structures are developed at the first few matching
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Figure 6.14: Measurement of Ic(Ha) for different T , scaled by corresponding Ic(0). Sample pa-

rameters are (a) s = 20 µm, p = 0.5 µm, (b) s = 20 µm, p = 1 µm, (c) s = 5 µm, p = 2 µm, (d)

s = 50 µm, p = 2 µm. All samples have b = 1.5 µm and the temperature variation is such that

higher temperature corresponds to a larger magnitude of Ic/Ic(0) oscillations.

peaks for smaller constriction period – cell length, overall structures are similar to

the measurement results we discussed above. We also notice that the magnitudes

of the oscillation peaks are smaller for s = 5 µm [Fig. 6.14(c)] when compared to

samples with larger spacing. This reduction in the magnitude of Ic at the matching

field is mainly due to the collective effect formed when channel spacing reaches a low

limit at, s < λNbN
⊥

. In this case, inter-channel vortices interact, forming a crystalline

arrangement and moving in a collective motion. We will discuss this more in Chapter

8.
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6.5 Magnetic hysteresis

As discussed earlier in this chapter, at the edge of a superconducting strip, vortices

will enter when Ha reaches Hs. Since the penetration depth λ and coherence length

ξ vary with T as discussed in Chapter 2, one would expect a longer λ at higher tem-

peratures, thus a smaller Hs, whereas a larger Hs at lower temperatures is expected.

Applying the standard edge barrier expression for Hs (Eq. 6.9) with our estimated

film parameters leads to HNbGe
s ∼ 2.6− 0.7Oe in the temperature range we studied,

although the entry field into the ends of the NbGe channels is likely somewhat smaller

than the HNbGe
s estimate when current distortions are considered at the channel ends.

Indeed, we typically observe the first entry of vortices into the channels followed by

oscillations in Ic(Ha) for Ha ∼ 1 Oe. Performing a similar estimate for vortex entry

into the NbN banks yields HNbN
s ∼ 8Oe. As discussed in Chapter 2, the variation

of λ is more abrupt when the T is close to Tc than when T is far from Tc. Since

the measurement temperatures are below TNbGe
c = 2.93K, which is far smaller than

TNbN
c ≈ 10K, there is almost no temperature dependence for λNbN

⊥
in our measure-

ments.
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Figure 6.15: Critical current of a wide channel (channel width: ∼2 mm) as a function of field

while the field was ramped from zero to 67 Oe (solid) and back to zero (dashed) showing a bare

NbGe strip Ic(Ha) retraced completely even when Hmax ≫ HNbN
s . Strip width w = 200 µm, and

T = 2.78 K.
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We can probe the possibility of vortex entry into the NbN by increasing Ha to

progressively larger values Hmax before reducing it and checking the reversibility of

Ic(Ha), as vortices trapped in the strong-pinning NbN will exhibit an irreversible

magnetic response and will offset the net magnetic field experienced by the vortices

confined to the channels. For a pure edge barrier, one with no bulk pinning and no

channels, Ic is reversible with Ha up to relatively large fields. In Fig. 6.15, the Ic(Ha)

curve can be retraced completely even after we ramped Hmax to ∼ 70 Oe. We see the

same reversibility in our channels as long as the fields aren’t too large (Fig. 6.10).
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Figure 6.16: (a) Magnetic hysteresis in Ic(Ha) for a sweep field slightly larger than the NbN entry

condition, with Hmax ∼ 8.3 Oe; solid line is outgoing sweep whereas the dashed line represents a

return field sweep; (b) a plot of the critical current when the field reduced to zero I
′

c/Ic(0) as a

function of Hmax showing the determination of the NbN vortex entry field. Both have s = 20 µm,

and were measured at T = 2.78 K, and here (a) has p = 2 µm, while (b) is a ratchet sample and

has p = 4.5 µm.

However, when bulk pinning as well as channels are present in the system, for

Hmax & 8Oe, Ic(Ha) becomes hysteretic, with the opening of the hysteresis loop

growing with Hmax [Fig. 6.16(a)]. To determine the threshold field for magnetic

hysteresis experimentally, we measured our samples repeatedly while incrementing

Hmax. If Hmax < HNbN
s , the critical current at Ha = 0 on the return sweep which we

call I
′

c(0), will be the same as it was before the field was increased, that is I
′

c(0)= Ic(0).

As soon as the maximum sweep field Hmax is larger than HNbN
s , the pinned vortices

in the NbN cause the local fields in the channels to be larger than Ha on the return
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sweep. At the point of Ha = 0 Oe, some vortices will still be trapped in the strong-

pinning NbN, which effectively shifts the I
′

c(0) to a smaller number. Therefore I
′

c(0)

will be less than Ic(0) [Fig. 6.16(b)].
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Figure 6.17: Magnetic hysteresis in Ic(Ha) for larger field sweeps, with Hmax as indicated for

s = 20 µm, p = 2 µm, T = 2.78 K. The curve for Hmax = 6.2Oe is the same as in Fig. 6.10 with no

hysteresis.

Also, the matching peak structure on the return branches of Ic(Ha) becomes

washed out for larger Hmax, as the disordered distribution of vortices that occurs in

the strong-pinning NbN when Ha is reduced randomizes the potential for the vortices

moving in the channels (Fig. 6.17).
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6.6 Dynamical hysteresis in IVCs around the match-

ing peaks

ForHa below the threshold to introduce vortices into the NbN banks, in the vicinity of

the Ic(Ha) matching peaks, we often observe a completely different type of dynamical

irreversibility consisting of hysteresis in the IV curves. Figure 6.18(a) shows two

example IVCs for the outgoing and return current sweeps, one between matching

peaks with no hysteresis, and the other near the second matching peak with clear

hysteresis.
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Figure 6.18: (a) Example of dynamical hysteresis in IV curve in the vicinity of one of the matching

peaks (red/blue) compared to a reversible IV curve (green) [s = 20 µm, p = 1 µm, T = 2.70 K].

(b) Density plot of the difference of the flux-flow voltage between the outgoing and return current

sweeps [∆V = Vout(I) − Vreturn(I)] as the color scale for different Ha; corresponding Ic(Ha) is

superimposed (yellow).

We can combine all of the measured IVCs for a particular channel configuration

and T by making a density plot, where the color scale is the difference between the

voltage on the outgoing and return current sweeps. We superimpose the correspond-

ing Ic(Ha) curve for reference [Figure 6.18(b)]. This particular example shows regions
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of dynamical hysteresis near the first three Ic(Ha) peaks. Over the range of drive fre-

quency that we have studied, 20 − 400 Hz, we observe no change in this response.

The upper limit of the data on the current axis is set by the point where the flux-flow

voltage approaches the Larkin-Ovchinnikov instability point as discussed in Chapter

2, where the channels switch abruptly to the normal state [14].

This hysteresis in the IVCs may correspond to a distortion of the vortex distribu-

tion as the driving current is reduced, allowing the vortices to keep flowing at higher

velocities than when the current was initially increased.

As discussed in Chapter 3, the hysteretic dynamics for vortices in periodic arrays

of antidots were recently reported [43]. These were connected to previous theoretical

work involving the transition to turbulent flow related to the interplay between inter-

stitial vortices and those pinned in the antidots [36, 45]. The origin of the hysteresis

in our system is likely somewhat different, as all of the vortices are confined to the

weak-pinning channels.

sample
period(µm) spacing(µm)

number of hysteresis vs. temperature

label 2.61 K 2.70 K 2.78 K 2.83 K 2.90 K

d1 0.5 20 1 1 1 1 0

d2 1 20 3 3 2 2 0

d3 2 5 0 0 0 0 0

d4 2 20 0 1 1 0 0

d5 2 50 0 1 1 0 0

Table 6.2: Number of dynamic hysteresis at different temperature for all the samples we measured.

Other than the sample discussed in this section, where s = 20 µm, p = 1 µm,

we measured samples with other channels spacings (s = 5 µm, 50 µm), and samples

with other periodicities (p = 0.5 µm, 2 µm). All of the samples were measured at five

different temperatures (T = 2.61 ∼ 2.90 K). Table 6.2 shows dynamical hysteresis

at multiple samples as well as at multiple temperatures. Although the dynamical



6.7 Conclusion 81

hysteresis always appears in the vicinity of the matching peaks that we observe in

Ic(Ha), some of the samples show dynamical hysteresis more than once in a single

measurement. It appears 3 times in the measurement for the sample d2 at T = 2.70 K.

We note that the diamond channels with the smallest spacing, s = 5µm, did not

exhibit any such hysteresis, where strong interactions between vortices in adjacent

channels may have prevented the instability that produced the hysteresis in other

channel samples. Also, none of the channel configurations that we have studied

exhibited this type of hysteresis at the highest temperature of our measurements,

where T = 2.90 K. We are currently investigating further this dynamical hysteresis

in our channels.

6.7 Conclusion

To summarize, we have measured vortex dynamics in weak-pinning channels contain-

ing periodic constrictions that are small compared to the vortex size. Over much of

the magnetic field range that we studied, all of the vortices are confined to the chan-

nels and the channel structure results in strong matching effects between the vortex

distribution and the constriction lattice. In the vicinity of the matching peaks, we

often observe a dynamical hysteresis in the vortex response that may be related to a

distortion of the vortex distribution.
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Chapter 7

Asymmetric weak-pinning

superconducting channels: vortex

ratchets

7.1 Introduction

The general issue of interacting particles in confined geometries is important in a va-

riety of physical systems, including colloids flowing through microchannels [109] and

Wigner crystals [110] in the presence of constrictions [111]. Using appropriate asym-

metries, such tailored potentials can also form model systems for studying ratchet

dynamics, with applications ranging from superconducting devices to investigations

of biomolecular motors [26].

I demonstrated the matching effects of vortices moving through periodic con-

strictions in superconducting weak-pinning channels in the previous chapter. In this

chapter, I introduce a vortex ratchet using two-dimensional guides in generating asym-

metric channels for vortex motion. In our structures, the potential asymmetries arise

from differences in the interaction strength between vortices and the channel walls, re-

sulting in a substantial ratchet effect for the motion of vortices through the channels.
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Our design is related to a previous vortex ratchet proposal [112], although our ratchet

is in a somewhat different parameter regime. In this 1999 paper by Wambaugh et

al., a set of 2-D asymmetric channels, each consisting of a chain of triangular cells

many times larger than the size of a vortex characterized by the penetration depth

λ, had been studied with the molecular dynamics simulations of vortices.

More specifically, I present measurements of vortex dynamics in the channels

and compare them with similar measurements on a set of uniform-width channels.

While the uniform-width channels exhibit a symmetric response for both directions

through the channel, the vortex motion through the asymmetric channels is relatively

different, with substantial asymmetries in both the static depinning and dynamic flux

flow. This vortex ratchet effect has a complex dependence on the magnetic field and

driving force amplitude.

7.2 Sample characteristics

The results presented in this chapter consist of measuring a set of weak-pinning

channels with 200 nm-thick films of a-NbGe and 50 nm-thick films of NbN on a Si

substrate, and we have designed many of the channels such that the walls have an

asymmetric sawtooth pattern as described in Chapter 5.

s=10 μm

W
=

5
0

 μ
m

Figure 7.1: Schematic of strip with ratchet channels showing sample parameters; in this case,

channel spacing s = 10 µm and strip width w = 50 µm.

The sample design and parameters are essentially the same as the diamond sample
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discussed in the previous chapter (Chapter 6), but in this case the channel size and

shape are different; and there is also a slight Tc difference due to different batches

of films used. The channel depth is ∼ 88 nm. Our layout consists of a strip with

multiple pairs of probes for sensing the voltage drop V due to vortex motion (Fig.

7.1). A transport current driven through the strip with an external supply generates

a transverse Lorentz force on the vortices.
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Figure 7.2: Atomic Force Microscope (AFM) image showing a ratchet cell with period p = 4.5 µm;

and b = 1.5 µm.

In between each pair of voltage probes is an array of identical channels – one

array consists of 50 channels each with a constant width of 2 µm; another array has

30 ratchet channels with channel spacing s = 10 µm, cell period p = 4.5 µm and

half-width b = 1.5 µm [Fig. 7.2]; yet another array contains 30 identical ratchet

channels, all oriented in the opposite direction across the strip as a reference sample.

Again, we perform our measurements with the strip immersed in a pumped helium

bath with a temperature stability of 0.2 mK/hr. Our results presented here were

obtained at T = 2.78 K, and our measured transition temperature for the a-NbGe is
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Tc = 2.88 K. The reason in choosing the measurement temperature 2.78 K is largely

for the convenience of the experiment’s purpose. In the next chapter, I will show

measurements of the vortex ratchet at other temperatures.

7.3 Theoretical treatment - calculate potential en-

ergy of a vortex with Mkrtchyan model

At the temperature of our measurements, we estimate the penetration depth of the

NbN to be λNbN ≈ 0.5 µm and that of NbGe to be λNbGe ≈ 1.9 µm, based on the

film parameters and the standard dirty-limit expressions (Eq. 2.7 – 2.8), assuming a

two-fluid model for temperature dependence. Furthermore, the thin-film penetration

length is

λ⊥ = 2λ2/d, (7.1)

where d is the thickness of the superconducting film. λ⊥ sets the characteristic extent

for the screening currents around a vortex in a thin film of ∼ 42 µm for the NbGe

in the channels, clearly much greater than the width of the channels, such that the

shape of the channel walls will play an important role in distorting each vortex.

As I discussed in Chapter 6, the interaction of a vortex with the channel walls can

be understood by considering the model of Mkrtchyan et al. [107] for the interaction

between a vortex and the interface between two superconductors with different pen-

etration depths (Eq. 6.12). Similarly, if we consider a single vortex located in one of

the ratchet cells, we can make a crude model of the potential energy landscape by

summing the contributions from the interaction of the vortex with each of the three

walls of the ratchet cell, ΣUi [Fig. 7.3(a)]. Again, we only expect to get a qualitative

picture with this simple model, as the limitations of this model were discussed in the

last chapter (Chapter 6).

The derivative of this potential along the central symmetry line of the cell exhibits

an asymmetric force on the vortices [Fig. 7.3(b)]. Thus, the two sloped walls result in
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a gradual increase in the potential energy as the vortex approaches the aperture in the

“easy” direction, while the potential energy grows abruptly as the vortex approaches

the wide back wall of the ratchet cell for motion in the “hard” direction.
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Figure 7.3: (a) Contour plot of model potential for vortex interacting with ratchet cell walls. (b)

Magnitude of the corresponding force along the center of the channel.

7.4 Critical current measurements on uniform chan-

nels

The measurement procedure here is similar to the one I described in the previous

chapter for our diamond samples. For each measurement sequence, the strip was

heated to ∼ 15 K, above Tc for both the NbGe and NbN films, and was then cooled in

a zero applied magnetic field; a µ-metal shield reduced the background magnetic field

below 13 mG. All field-dependence data were acquired while increasing the magnetic
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field Ha from zero, where we generated Ha with a superconducting coil.

We characterize the transition from the static state to a dynamical flux flow regime

by measuring the critical current in the conventional way, that is, by measuring the

IVC as described earlier, then using a 1 µV criterion to define the critical current Ic as

I discussed on Chapter 5. Also as discussed in Chapter 6, measurements of the field

dependence Ic(Ha) on the 2 µm-wide uniform channels display a similar response to

the characteristic of an edge barrier for a thin, weak-pinning superconducting strip

in a perpendicular magnetic field, where the entry of vortices at the strip edge is

determined by the distortion of the current density across the width of the strip

[102, 105].
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Figure 7.4: Ic(Ha) for uniform-width channels at low magnetic fields with linear fit (dashed) and

H−1
a fit (solid), described with edge barrier model. Hs is the field limit for vortex entry into the

superconductor at I = 0

Ic is at the maximum when Ha = 0, where Ic is determined by the entry of

vortices and antivortices at opposite edges of the strip due to the self-field of I. As

Ha is increased, Ic(Ha) initially decreased linearly [Fig. 7.4(dashed line)], as the self-

field and Ha added with the same sense at one edge are able to exceed the vortex

entry condition for a progressively smaller I. In this regime, there are no vortices

present in the strip for I < Ic, while larger currents result in a dynamical flux flow

state with vortices entering the strip at one edge and moving across to the other edge.
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The measurements of Ic(Ha) for the 2 µm-wide uniform channels essentially follow

this behavior. Ic is symmetric with the direction of I and the sense of Ha [Fig.

7.5(dashed line)], indicating that the channels are symmetric and the strip edges at

the ends of the channels do not have any significant roughness asymmetries [106].

This is consistent with the entry of vortices only into the channels at the edge of

the strip, but not into the strong-pinning NbN banks, as one would expect when

Ha < HNbN
s (HNbN

s is the surface entry field of NbN film as described in Eq. 6.9),

based on the lower edge barriers at the channel edges compared to the thicker NbN

banks.

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

I c
(m
A
)

Ha (Oe)

Figure 7.5: Critical current variation with Ha – ratchet channels (solid) and uniform-width chan-

nels (dashed).
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7.5 Critical current measurements on ratchet chan-

nels

For the ratchet channels, Ic is also at maximum when Ha = 0, with an initial linear

decrease as Ha increased. However, in contrast to the uniform-width channels, Ic is

weakly asymmetric with a ∼ 15% difference for the two polarities of I [Fig. 7.6(a)].
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Figure 7.6: Ratchet Ic(Ha) for both senses of I at (a) small Ha, (b) large Ha.

In this low-field regime, where Ic corresponds to the entry of vortices into the

vortex-free state of the channels, the smaller Ic has the sense of the bias current

pushing the vortices in the hard direction of the ratchet. This is the reverse of what

might initially be expected, and I will address this in more detail later in this chapter.

As we can see from Fig. 7.5(solid line), whenHa is reversed, the sense with the smaller

Ic inverts as well, again corresponding to vortex motion in the hard direction.

For larger magnetic fields, Ic(Ha) deviates from a linear decrease [Fig. 7.6(b)], as

in the uniform-width channel measurements when a static vortex dome can be formed

in the channels before I reaches Ic. In this regime, the ratchet channel Ic develops

a substantial asymmetry with respect to the sense of I. Vortices sit statically in the

ratchet channels for I < Ic, and thus can explore the asymmetry due to the shape

of the ratchet channel walls as I is increased, such that vortices depin and flow at a

smaller I when the Lorentz force is oriented in the easy direction. Ic for the sense of



7.6 Dynamical flux-flow state - measurement of ratchet

rectification signal 91

I pushing vortices in the hard direction of the ratchet becomes considerably larger

than that for the easy direction and exhibits a sequence of peaks in regions where

Ic actually increases with Ha. A more detailed discussion about this type of critical

current oscillations was discussed in Chapter 6.

Thus, at the start of this regime, the critical currents for the two directions of

vortex motion actually cross [Fig. 7.6(b)]. This is consistent with the antisymmetry

of Ic(Ha). That is, for the opposite sense of Ha, the smaller Ic occurs for the opposite

sense of I and thus the same spatial direction occurs through the ratchet.

The peak structure in Ic for the hard direction of the ratchet is likely due to the

commensurability effect of vortices interacting with the weak-pining periodic con-

stricted channels. This indicates the abrupt crossing of Ic for the two senses of

current corresponds to a transition from the vortex entry state to the matching state,

where each maxima in the Ic corresponds to an integer number of vortices in each

ratchet cell.

7.6 Dynamical flux-flow state - measurement of

ratchet rectification signal

With the oscillatory current applied along the sample strip, one side of the curve

typically has a larger voltage response than the other for ratchet channels. By plot-

ting both the negative and positive branches of the IVC in the first quadrant, the

substantial asymmetry of the response for the ratchet channels is apparent. Further-

more, from the IVC for the ratchet channels, there are clear asymmetries both in the

critical currents at which the vortices begin to depin from the static state and in the

flux flow resistances, which is inversely related to the vortex dynamic friction in the

channels. A general method to characterize asymmetries in both static and dynamic

properties involves averaging V (t) over a complete cycle, such as the trace in Figure
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7.7(b), to obtain Vdc.

Vdc =
1

T

∫ T

0

V (t)dt, (7.2)

where T is the a period of the drive signal.

(b)

(c)

Figure 7.7: (a) A sinusoidal current drive I(t). (b) V (t) for ratchet channels; Iac = 0.59 mA.

(c) IVC for ratchet channels plotted with positive and negative branches in the first quadrant for

comparison.

For a value of Ha corresponding to the IVC of Figure 7.7(c) for the ratchet chan-

nels, Vdc will clearly be non-zero, while for uniform-width channels, we always observe

Vdc = 0 for all Ha.
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Figure 7.8: Density plot of Vdc vs. Iac and Ha. Ratchet sample with p = 4.5 µm, b = 1.5 µm and

s = 10 µm.

We map the variation of Vdc with Ha and Iac for the ratchet channels (Fig. 7.8) by

zero-field cooling, then measure Vdc(Iac) while incrementing Ha toward positive values.
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We zero-field cool again in order to measure the Ha < 0 response by incrementing Ha

from zero toward negative values.

For each Ha, we perform our standard measurement of Vdc using a burst of sinu-

soids with amplitude Iac while stepping to progressively larger values of Iac. For any

Ha, Vdc(Iac) is generally zero for small Iac, when I < Ic(Ha) for both polarities. For

larger Iac, |Vdc| tends to grow, thus corresponding to an increase in the vortex velocity

through the channels, until an instability occurs and the channels switch out to the

normal conducting state (Fig. 7.9).

V
dc
(
µ

V
)

Iac(mA)
1 2 3

-4

0

3.6 Oe

0.8 Oe

8.6 Oe

40.1 Oe
0.0 Oe

0

Figure 7.9: Vdc(Iac) for indicated values of Ha.

In general, for a rocking-ratchet, when the driving frequency reaches a limit, the

ratchet rocks too quickly for particles to respond. In this regime, particles won’t

be able to move to the next cell in one period. A decrease of ratchet rectification

is expected [71]. A more detailed discussion about vortex ratchet measurements in

adiabatic state can be found in Chapter 4.

The switching point is independent of the frequency of our I(t) sinusoid, at least

up to 2 kHz, and the sample is immersed in liquid helium, thus making simple Joule

heating unlikely as the cause. Instead, the curvature in the IVC at large Iac (Fig.

7.10) suggests that the switching is related to the Larkin-Ovchinnikov vortex core
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instability mechanism [14] as discussed in Chapter 2, perhaps with a related self-

heating effect as evidenced by the Ha-dependence of the maximum Iac visible in Fig.

7.8 [18].

0 1 2 3

|V
| (
µ

V
)

|I| (mA)

0

40

80 V > 0

V < 0

Figure 7.10: IVC for Ha = 8.6 Oe measured for large Iac out to Larkin-Ovchinnikov instability.

Due to experimental constrain and the limit on the vortex response imposed by

the Larkin-Ovchinnikov instability velocity, it is difficult to increase the frequency to

the point of a characteristic frequency limit. Our system, measured at driving current

frequency f = 210 Hz, should be far below the characteristic frequency limit, and

therefore is operated in an adiabatic state. In fact, almost all of the vortex ratchets

implemented are showing an adiabatic response [26, 55].

Normally, the thermal effects can play a significant role in such rocking-ratchet.

But this does not seem to be the case for our ratchet, at least not experimentally.

It is difficult to test this temperature variation for our ratchet system, not only

because of the thermal energy but also because the superconductor parameters, such

as penetration depth λ and pinning strength which will change with temperature as

well.

As one can see from Fig. 7.9, some of the curves have a magnitude of Vdc increasing

until the switching point; others reach a maximum in |Vdc|, then turn around, implying

that the vortex motion in the other direction of the ratchet is playing a larger role.

In most cases, the Larkin-Ovchinnikov instability limits whether or not we can see
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the maximum in Vdc.

Figure 7.11: A schematic of the linear potential V (x) as a function of position x from Magnasco

[71]. The period of the potential is λ = λ1+λ2 and the symmetry breaking amplitude is δ = λ1−λ2.

(from Magnasco, 1993, p.1478)

For generic rocking-ratchet, as the driving force increases, particles tend to move

toward the easy direction of the ratchet (toward the right in Fig. 7.11). With the

driving amplitude increasing to larger values, some particles start to move toward the

left of the ratchet causing ratchet effects to decrease(Fig. 7.11). Similar behavior can

be found in the Ref. [71], where a rocking-ratchet with sawtooth potential had been

studied numerically.

In general, Vdc is antisymmetric with Ha, thus indicating that the direction for net

vortex motion corresponds to the same spatial direction through the ratchet channels.

This means that when a negative field Ha is applied, the anti-vortices in the channels

will move to the opposite direction, corresponding to vortices moving in the same

spatial direction as if positive Ha had been applied. There are also substantial peaks

in |Vdc| visible on either side of Ha = 0; thus there is an Ha that optimizes the ratchet

effect [Fig. 7.12]. For large Ha over the optimum field, |Vdc| is diminished, although

there is still a non-zero value for Ha considerably beyond the peak, up to 70 Oe.

For Ha = 0, Vdc ≈ 0 for all Iac, as there are no screening currents flowing along

the channel walls in response to Ha. For Ha 6= 0 but still small, the sign of Vdc

corresponds to the net motion of vortices in the hard direction, consistent with the
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reversal of the critical currents observed in the measurements of Ic(Ha) [Fig. 7.6(a)].

There is an abrupt transition of Vdc to the expected sign for net vortex motion in the

easy direction at Ha ≈ ±1 Oe and this can be seen as vertical ridges in Fig. 7.8.

Figure 7.12: Vdc(Ha) line cut at Iac = 2.1 mA along the density plot in Fig. 7.8.

By comparing the line cuts of Vdc(Ha) for a particular value of Iac [Fig. 7.12]

with the measurements of Ic(Ha) [Fig. 7.6], we observe that the ridges in Vdc [Fig.

7.8] occur at approximately the same Ha as the crossing of the two senses of Ic [Fig.

7.6]. For a small Ha, below this crossover of the two senses of Ic, where no vortices

are present in the channels for I < Ic, there are screening currents flowing along the

channel walls due to the discontinuity in the thickness and penetration depth at each

wall. These currents will be concentrated at the outer points of each ratchet cell and

can effectively invert the sense of the ratchet potential defined by the shape of the

channel walls [99], thus reversing the ratchet effect for the vortices that enter the

channels when I > Ic as shown in Fig. 7.13.

We also notice the value of Ha at which |Vdc| reaches the maximum (Ha = 8.6 Oe)

coincides with the approximate convergence of the two senses of current through the

strip. Thus at this point, the arrangement of vortices minimizes the asymmetry in

the static friction, as characterized by Ic, yet the overall ratchet response as captured
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Figure 7.13: Schematic of Meissner screening currents flowing along the channel walls can invert

the ratchet potential at the small field. The arrow line indicate the screening current flow in the

vortex-free region; the pink dots present the field focus caused by the current flow near the corners

of the ratchet channels; the dashed lines in the channel indicate the inverted potential.

by |Vdc| is a maximum due to the substantial asymmetry in this regime between the

dynamical sliding states for the two directions through the ratchet. The two branches

of the IVC measured with a large Iac [Fig. 7.10] exhibit a considerable difference in

curvature and this dynamical asymmetry results in the significant ratchet response.

7.7 Magnetic hysteresis in ratchet channels

As discussed in Section 6.5, the vortex dynamics will become hysteretic when the ap-

plied field Ha is larger than the vortex entry field of NbN, HNbN
s . In the measurement

of the ratchet channels, we can clearly see magnetic hysteresis when we increase Ha

to large values (Fig. 7.14). The sample parameters in Fig. 7.14 are: W = 200 µm,

s = 20 µm and p = 4.5 µm, measured at temperature T = 2.78 K. Note that the strip

width is 200 µm, and the vortex entry field (HNbN
s ∼ 4 Oe) whereas the entry field

of a 50 µm-wide strip, HNbN
s ∼ 8 Oe. This variation of the first vortex entry field

is consistent with what would be expected from Eq. 6.9, where Hs shows an inverse

square root dependence on W , Hs ∝W−0.5. When the strip width varies from 50 µm

to 200 µm, the corresponding Hs changes from ∼ 8 Oe to ∼ 4 Oe.
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Figure 7.14: (a) Critical current as a function of the field while the field was ramped from zero to

67 Oe and back to zero, then ramped to −67 Oe without resetting the temperature, and finally back

to zero, (b) a line-cut of ratchet signal Vdc as a function of the field for same measurement as (a).

Sample parameters are: w = 200 µm, s = 20 µm, p = 4.5 µm and was measured at T = 2.78 K.

The hysteretic response of the critical current in Figure 7.14 is qualitatively similar

to the one in the uniform channels (Fig. 6.17). However, the ratchet potential causes

asymmetrical between the hard and the easy directions in the critical currents. This

asymmetry can be seen in Figure 7.14.

We can see this ratchet magnetic hysteresis effect in a more dramatic form by a

comparison of density plots for outgoing and return magnetic field sweeps. Figure

7.15 shows a ratchet response in a magnetic hysteresis measurement.

7.8 Conclusion

To summarize, I discussed the vortex dynamics in the periodic constricted weak-

pinning channels in the last chapter, where we addressed the influence of the edge

barrier in our system, the commensurability on Ic(Ha) and magnetic hysteresis while

vortices are present in strong-pinning NbN film.

In this chapter, we extended our study to a vortex ratchet. I have demonstrated

a substantial ratchet effect for a system of vortices moving through weak-pinning

channels with asymmetric walls. This ratchet exhibits considerable asymmetries in

both the static and dynamic friction, with different dependences on Ha. The edge
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Figure 7.15: Density plot of a ratchet sample superimposed with critical current; (a) density

plot while field is ramping up; (b) is measured when field reduces to zero. Sample parameters are:

p = 4.5 µm, s = 20 µm and w = 50 µm.

barrier corresponding to the strip geometry of our structure plays an important role in

the vortex dynamics, including delineating a low-field Meissner regime in the channels

from a state corresponding to vortices occupying ratchet cells statically for I < Ic.

However, asymmetries in the edge barriers alone as described in Ref. [106] cannot

account for our ratchet effect, although this may be related to the smaller reverse

ratchet response that we observed at the small Ha in the Meissner regime of the

channels.

The microfabricated nature of our channels allows for future ratchet explorations

with different channel wall shapes and configurations. I will discuss these different

configurations as well as ratchet cells with smaller periodicity p in the subsequent

chapters.
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Chapter 8

Controlling confinement and

interactions in weak-pinning vortex

ratchet channels

8.1 Introduction

I have demonstrated an implementation of the vortex ratchet in asymmetric weak-

pinning superconducting channels. These two-dimensional guides for vortices [112]

allow us to provide a spatial asymmetry by tailoring the shape of the channel walls.

The channels themselves had minimal pinning that could impede the motion of vor-

tices. In Chapter 7, we observed a strong dependence of the ratchet response on the

magnetic field, with a particular field resulting in the maximum rectification, where

the vortices distributed in the ratchet channels optimized the asymmetric response

[101].

By varying the channel geometry and configurations, our weak-pinning channels

provide a ratchet system where we control the ratchet dynamics and particle inter-

actions. In this chapter, I present a wider exploration of the parameter space for

this weak-pinning channel ratchet system for devices with different channel spacings,
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ratchet cell shapes and temperatures. All of these parameters influence the nature as

well as the magnetic field of the ratchet maximum. In addition, for certain parameter

regimes, we find evidence of collective effects due to vortex interactions both within

channels, leading to reversals of the direction for net vortex motion, and between

vortices in neighboring channels. This results in an enhancement of the rectification

strength near the ratchet maximum and influences the nature of the ratchet rever-

sals. In the following sections we explore the ratchet response as we vary each of

these parameters.

8.2 Channel spacing

In this section, we vary the spacing between channels, keep all other sample param-

eters fixed. Varying the channel spacing influences the interaction between vortices

in neighboring channels when channel spacing (s) is in the range of the penetration

depth of NbN (λNbN
⊥

). We explore this commensurability by measuring identical

strips containing identical ratchet channels, meaning there will be roughly the same

amount of flux in the channels at the ratchet maximum field; this corresponds to a

particular configuration of vortices in the ratchet cell. We have measured samples

with different channel spacings covering a wide range – from ∼ 5µm to ∼ 250µm.

In Figure 8.1, substantial peaks in |Vdc| can be seen for each spacing, where the

field corresponding to the ratchet maximum shifts to smaller field in larger spacing.

The reducing of maximum Iac with the increasing of the applied field is related to

the Larkin-Ovchinnikov vortex core instability mechanism [14]. Compared to the

density plot we discussed in Chapter 7 (Fig. 7.8), the ratchet Vdc in this chapter

is positive, because the sample orientations were opposite. Therefore, the positive

current drives the vortex motion along the easy direction of the ratchet channels,

whereas the positive current drove the vortex motion along the hard direction in the

previous chapter.
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Figure 8.1: Density plots of samples with (a) 10 µm, (b) 20 µm and (c) 75 µm channel spacings,

where T = 2.78 K, b = 1.5 µm and w = 200 µm.

Making line-cuts through the density plots at certain driving currents can resolve

the overall structure of the ratchet response along the field axis (Fig. 8.2). The
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ratchet maximum moves to a larger field at the spacing. We extract the magnetic
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Figure 8.2: Vdc vs. Ha line-cuts of different channel spacings, s = 75, 20 and 10 µm from left to

right respectively, where T = 2.78K , b = 1.5 µm, w = 200 µm and cutting amplitude Iac as indicated

in Figure 8.1 with dashed line is 80% of Ip, where Ip is the switching out current amplitudes at the

corresponding ratchet peak fields.

field (Hp) at the ratchet maximum (Vp) and then plot 1/Hp as a function of the

channel spacing, as shown in Figure 8.3. This demonstrates that a smaller spacing

should require a larger applied field in order to result in a particular configuration of

vortices in each ratchet cell. In contrast, if channels are far apart, a smaller applied

field is needed to reach the same matching condition.

As I discussed previously, the flux density in the channel is primarily determined

by the area occupied by the vortex. When the channel spacing is small (s < λNbN
⊥

),

vortices in adjacent channels will be highly overlapping, while along the channel, the

relevant length for the flux is cell length p. The flux density required for adding

one more vortex, therefore, is determined by ∆B ≈ Φ0/s p. We think the ratchet

maximum should correspond to a particular vortex configuration, that is an integer

number of vortices per ratchet cell. So the 1/Hp should vary linearly with s at small

spacings, as one can see in Figure 8.3.

On the other hand, if channels are far apart (s ≫ λNbN
⊥

), the flux will extend

∼ λNbN
⊥

into the banks on either side of the channels. Thus, the flux density required
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Figure 8.3: Plot of 1/Hp versus spacing showing 1/Hp varies linearly at the small spacing, but

approaches to a constant at the large spacing.

for adding one vortex in the cell is ∆B ≈ Φ0/2pλ
NbN
⊥

. This indicates that the 1/Hp

should approach a constant at the large spacing (Fig. 8.3).

Intuitively, one would expect that below some threshold channel spacing, vortices

in neighboring channels will be able to start interacting. While above this threshold,

the vortices in one channel would be independent of vortices in the other channels. As

one can see from Figure 8.2, in addition to the variation of the maximum peak field

with a channel spacing, we observe an enhancement of the maximum ratchet signal

(Vp) for small channel spacings (Fig. 8.4). This increase can be as large as nearly
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Figure 8.4: Maximum ratchet signal Vp varies with spacing s.
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a factor of two. This is most likely due to the collective effects of the vortex inter-

channel interactions. At the smaller spacing, where s < λNbN
⊥

, vortices in neighboring

channels may start to interact and form a crystallized arrangement, which enhances

the ratchet effect [26, 96].

8.3 Ratchet cell shape

In this section, we fix the aperture size and the cell length, but we vary the width at

the wide end of each triangular cell (“b” in Fig. 8.5). In addition to ratchet channels

uniform 12to1 9to1 6to1 3to1 9to5

bb

p

Figure 8.5: Schematic showing different taper shapes from left to right are uniform channel, where

b = 0.375, 0.5, 0.75, 1.5 and 2.5 µm. These are only portions near one end of each of the channels.

with a taper of 3/1 (the ratio of p/b, where p = 4.5 µm.), we have other samples

with tapers of 12/1, 9/1, 6/1, 9/5 and 1/1. The aperture sizes are the same for all

of the samples, which is ∼ 700 nm. In this paper, we show data from the 12/1,

9/1, 6/1, 3/1 and 9/5 tapers. We observed ratchet effects as well as variations of

the ratchet maximum field and different magnitudes of maximum rectifications. Of

course, within the limit of zero-width at the back of the ratchet cell, the structure

approaches a uniform channel; thus, any ratchet asymmetry vanishes.

Because vortex size is much larger than channel width, some fraction of vortex
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Figure 8.6: Vdc vs. Ha line-cuts through the ratchet peak of samples with different cell width.

s = 20 µm, T = 2.78 K , w = 50 µm and the cutting amplitudes are Iac = 80% Ip, where Ip is the

switching out current amplitude at the corresponding ratchet peak field.

flux will spill into the NbN banks – which can be carried by the channel wall screening

currents. Also, the penetration in the channels is much longer than in the banks, so

when b increases, more of the vortex flux is in the channel and thus requires a larger

Bch. A larger fraction of vortex flux that resides in NbGe channel will therefore

correspond to a larger matching field Hp. Figure 8.6 shows Vdc(Ha) for different cell

tapers.
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Figure 8.7: The field corresponds to the ratchet maximum plotted as a function of cell width.

As b increases, more and more flux is presented in the channel, and one needs
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larger field in order to reach the matching condition. We can plot this value as a

function of b. Figure 8.7 shows the peak field position vs. the cell width.

We plot the line cuts through the Vdc peak of each ratchet sample together (Fig.

8.6). We see an optimum ratchet shape at a particular cell width. The 6/1 taper

produces a larger ratchet signal than the other tapers as illustrated in Figure 8.9.

When the cell width is zero, the ratchet cell will become a uniform channel, whereas

at large cell width, the ratchet asymmetric potential will become less effective, vor-

tices will experience comparable potential on both hard and easy directions. For the

different tapers, the following applies: the easy direction gets easier for the shallower

tapers – small b; the hard direction is more difficult to model, but it is likely that

the enhanced barrier of the vortex motion persists even for small tapers, due to the

abrupt step from the channel walls at the back of each ratchet cell. This is consistent

with the critical current vs. the field plot (Fig. 8.8).
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Figure 8.8: The critical current scaled by Ic(0) as a function of the applied field for different cell

tapers. Positive Ic corresponds to the vortex motion in the hard direction of the ratchet channel,

whereas the negative Ic corresponds to the vortex motion in the easy direction. In this figure, b

varies from 0.38 µm to 2.5 µm.
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Figure 8.9: The maximum ratchet signal scaled by the flux flow resistance V ′
p = Vp/(Rr/Ru) varies

with cell width b. Here Rr and Ru are normal resistance of ratchet and uniform samples.

And we see that the smaller critical current in the easy direction has the larger

ratchet signal. We can also plot the ratchet maxima as a function of b, where an

optimum taper 6/1 is showing the largest ratchet signal (Fig. 8.9). For purposes of

comparison, the uniform channel critical current shows a symmetric behavior, which

corresponds to zero dc-voltage. We also notice that the Ic+ and Ic− merge at the

ratchet maximum, as we generally saw for other ratchet samples we have measured.

8.4 Temperature
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Figure 8.10: Calculation of penetration depth λNbGe vs. T .
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We investigated the temperature dependence in our measurements. As tempera-

ture decreases, the NbGe penetration depth λNbGe becomes shorter (Fig. 8.10). In the

temperature range of our measurement (T ≪ TNbN
c ), λNbGe

⊥
varies much more than

λNbN
⊥

does, where λNbN
⊥

is basically constant. The temperature range is limited by

the superconducting transition temperature, namely Tc as well as the thermomagnetic

instabilities at lower temperatures.

The maximum Vdc shifts to a higher value at a lower temperature. This is partly

because we can go further out on the IVCs for lower T , whereas at higher tempera-

tures, the Larkin-Ovchinnikov instability will limit the currents that one can apply.
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Figure 8.11: (a) Vdc vs. Ha line-cuts of different temperatures, where s = 20 µm, b = 0.75 µm,

w = 50 µm and cutting amplitudes Iac = 80% Ip, where Ip is the switching out current amplitudes

at the corresponding ratchet maximum. (b) The field corresponding to the ratchet maximum plotted

as a function of temperature.

More vortex circulating currents come into the NbGe channels from the NbN bank

while the λNbGe
⊥

becomes shorter. Therefore, the flux inside the channel is increased.

At a lower temperature, in order to reach the same number of vortices as required for

an optimum field at the ratchet maximum, one needs to increase the applied magnetic

field. As we can see from Figure 8.11, the ratchet maximum shifts to larger fields

at lower temperatures. Again, due to the nature of our channel structure, it is very

difficult to have a detailed calculation of the flux density in the channel. One would

need to carefully study the screening current on the strip as well as the interactions

between the vortices and channel walls.
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8.5 Ratchet reversals - results and discussion

For large channel spacings, in the limit of non-interacting channels for vortex densities

beyond the ratchet maximum point, the ratchet response can reverse for low driving

amplitudes as one can see from the yellow regions in Figure 8.1(b) and (c).

The occurrence of such ratchet reversals may depends on the configurations of

vortex lattice at high vortex density, which can lead to inverted potential [97]. The

relative importance of these different components depends on the particular vortex

ratchet system being explored.

As shown in Figure 8.12, the reversal ratchet appears at spacings larger than

10µm. NbN thin-film penetration depth λNbN
⊥

at T = 2.78K is ∼ 8µm. When the

channel spacing becomes smaller than ∼ 8µm, vortex-vortex inter-channel interaction

is enhanced so that vortices in the channel will have a collection-effect and form a

strong crystallized arrangement where they move collectively. We have measured the

small spacings at s = 10 µm and s = 5 µm, and we did not observe any reversal

effect. A line-cut at Iac = 5 mA along the density plot of the 10 µm spacing data is

shown in Figure 8.12(a).
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Figure 8.12: Vdc vs. Ha line-cuts for different channel spacings showing ratchet reversal.

At large Iac, the Lorentz force would break the crystallized structure, thereby

overcoming the inverted potential. This may eventually recovers the designed rectifi-

cation direction. Vortices in the weak-pinning channel will start to move toward the

easy direction of the ratchet, and the reversal ratchet effect disappears (Fig. 8.1).
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We also studied such ratchet reversals for different cell shapes by changing the

ratchet taper (Fig. 8.5). These are the same varying samples that we looked at

earlier in this chapter. Within the range of our measurements, we do not observe a

ratchet reversal at the smallest (b = 0.375 µm) and larger (b = 2.5 and 4.5 µm) cells.

When b is small, strong vortex density forces interaction among vortices within the

channel. Therefore, a collective motion will prevent the disordering from occurring.

For the larger ratchet cell, as vortices are far apart from each other, there will not be

any trapped vortices that will revert the potential.
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Figure 8.13: Vdc vs. Ha line-cuts for different channel spacings showing a ratchet reversal, where

the field axes are normalized by the corresponding peak field Hp.

When Ha reaches the surface entry field of NbN, Ha > HNbN
s , vortices will enter

and become pinned in the strong pinning NbN bank. There might be undiscovered

reasoning for the ratchet reversal in our system, but we are confident that the trapped

vortices in the NbN bank do not contribute to the ratchet reversal effect. We have

studied this effect in many different channel spacings. Based on our measurement

results, the ratchet reversals always appear at fields larger than twice that of the

main ratchet peak field Hr ∼ 2 × Hp (Fig. 8.13 and 8.14). Although some of the

fields are quite similar to the surface entry field of NbN in our system (∼ 8 Oe),

which is only determined by the strip width as we have discussed at Chapter 6, the

fact that the position of the ratchet maximum is moving with the spacing indicates

that the ratchet reversal onset field is changing while the width of the strip is kept
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signal reaches the maximum, showing the reversal starting field is twice that of the main ratchet

peak field.

constant, which means that the NbN surface entry field is kept constant.

8.6 Conclusion

In summary, we have demonstrated that we can control the ratchet dynamics by

changing various ratchet parameters. In particular, we have designed our devices

with different channel spacings and ratchet cell shapes. We measured those devices

at multiple temperatures, which are well below the critical transition temperature of

a-NbGe weak-pinning channel. During some parameter combinations of those mea-

surements, we studied the contribution of the vortex collective effect on the ratchet

response; a strong enhancement of the ratchet signal and a reversal of the ratchet

potential appeared. The vortex dynamics is a combination of the vortex-vortex inter-

action and an interaction between the vortex and the interplay of ratchet potential

shape and vortex lattice. With the ability to control these ratchet parameters, one

can change the ratchet characteristics, fine tune the ratchet rectification strength

and even select the direction of the ratchet potential. In the next chapter, I will

explore the role of commensurability in the ratchet channels and the relation to the

measurements of channels with diamond-shaped constrictions as presented earlier.
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Chapter 9

Commensurability in weak-pinning

ratchet channels with small cell

sizes

9.1 Introduction

In Chapter 6, I discussed the vortex commensurability with vortices confined by peri-

odic constrictions in our weak-pinning channels, where the channels were symmetric

constrictions. We see a strong reversible critical current oscillation over the range of

the applied magnetic field, which is influenced by the constriction period and chan-

nel spacing. We found clear evidence of magnetic hysteresis in the critical current

when vortices become trapped in the strong-pinning NbN bank at the large field. In

Chapter 7 and 8, we demonstrated substantial ratchet effects for a system of vortices

moving through weak-pinning channels with asymmetric walls. Other than a strong

rectification signal in the measured Vdc, multiple sharp features in the Ic(Ha) curve

had been observed, which appeared to be related to a matching effect although not

as strong as the periodic constriction sample.

By reducing the cell length of the ratchet cell (p in Figure 9.1), we can see a strong
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p

Figure 9.1: An atomic force microscopic image of ratchet channels with reduced cell size.

oscillation in the critical current as well as in the ratchet signal. In this chapter, I

will present measurement results of matching effects on smaller cell sizes than those

discussed in Chapter 8. For all of the samples discussed in this chapter, the half cell

width b = 1.5 µm and were measured at a temperature of T = 2.78 K.

9.2 Commensurability effects in ratchet channel

measurements

In Chapter 7 and 8, I discussed ratchet channels with various parameters, including

the half cell width b, channel spacing and measurement temperature. But within all

the ratchet samples we covered so far, the cell length p was kept constant at 4.5 µm.

We varied the cell length p for different ratchet channels. Within all the samples we

have measured (cell length: p = 1, 2, 3, 4.5, 6 and 9 µm), regardless of the spacing

and strip width, we only observe oscillations for Ic(Ha) data at p ≤ 4.5 µm. But more

significantly, the ratchet signal Vdc also exhibits a substantial matching effect (Fig.

9.2). The ratchet signal oscillations are most significant at a field range between zero

and the ratchet maximum.

The fundamental oscillation period on the ratchet signal coincides with the oscilla-

tion period on the critical current as shown in Figure 9.2(b). It appears immediately
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Figure 9.2: A ratchet rectification density plot of Vdc showing a ratchet signal with a strong oscil-

lation at p = 2 µm. The color scale corresponds to the measured ratchet voltage Vdc. Corresponding

Ic(Ha) is superimposed. (b) same as (a) but only shows the field to 10 Oe.

after the driving current exceeds the critical current, where vortices start to flow in

the channel dynamically.

Taking the Fourier transform on the Ic(Ha) data as we have been doing for the

diamond shape sample (Chapter 6), we can take the Fourier transform on the Vdc data

with respect to Ha. The characteristic frequency of the ratchet signal oscillation can

be better displayed using a density plot with the Fourier spectra at the corresponding

driving current, as shown in Figure 9.3. The x-axis is the characteristic frequency of

the ratchet data. The color scale (|F (ωH)|) corresponds to the Fourier transform of

Vdc. A strong oscillation frequency at ωH ∼ 0.86 Oe−1 can be identified in Figure 9.3.

In Figure 9.4, Ic(Ha) curves of different cell periods p were plotted. The channel

spacing s = 20 µm is the same for all four sets of data. For smaller p, the dominant

peaks in the critical current shift to larger Ha.

The ratchet maximum field (Hp), where the ratchet rectification signal Vdc reaches

the maximum value, can be identified from the corresponding density plot (Fig. 9.5)

as we did for some of the earlier measurement results presented in Chapter 7 and

8. For a small cell length ratchet, it is difficult to extract the field position of an

exact ‘maximum point’ as some of the ratchet maximum are very broad in field. A

quantitative method in order to define Hp could be to take the field range that is
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Figure 9.3: A density plot showing the characteristic frequency of ratchet oscillations, the color

scale corresponding to the Fourier transform of Vdc for each field step.
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Figure 9.4: Normalized critical current (in the hard ratchet direction only; the easy direction also

shows similar oscillations) as a function of the field showing the first oscillation peaks for samples

with different cell periods.

covered by a ∼ 10% drop of the Vdc from the ‘maximum point’ as the error bar for

its corresponding Hp.

Although the oscillation magnitude gets smaller with longer cell length, Figure

9.6 shows that the Fourier transform of the Ic(Ha) data provides a linear dependence

of the characteristic frequency ω0
H on the cell length p. It behaves qualitatively in the

same manner as the oscillations of the periodic pinning samples discussed in Chapter

6 [Fig. 6.13(a)]. As the inverse of Hp is shown in Figure 9.6(b), 1/Hp has a linear
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Figure 9.5: Density plots for different cell length p from p = 1 µm to p = 9 µm as they were

labeled directly on each plot. [s = 20 µm, b = 1.5 µm, W = 200 µm and T = 2.78 K]

dependence on p. The data includes points where we cannot see any oscillation on

the Ic(Ha) curve, namely p = 6 and 9 µm. If Hp corresponds to a particular vortex

configuration in the channel, it should have the same integer number of vortices per

cell for different p. So we attempted to match Figure 9.6(a) with Figure 9.6(b).

Surprisingly, both sets of data overlap very well with a scale factor of 13. Because

the fields at the ratchet maxima are bigger than NbN entry field, some vortices are

trapped in the NbN bank. The similarities by the linear p-dependence for 1/Hp and
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[w = 200 µm, s = 20 µm].

ω0
H suggest that the Vdc maxima likely also correspond to optimum configurations

with less than 13 vortices per ratchet cell.
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Figure 9.7: Normalized critical current (on the hard ratchet direction only; easy direction also

shows similar oscillations) as a function of the field, showing the first oscillation peaks for samples

with different a channel spacing.

With different channel spacing s, the dominant oscillation peaks move to the

smaller field with a larger channel spacing (Fig. 9.7). Here the cell length p = 2 µm

remains the same for all spacings.

We extracted the field that corresponded to the ratchet maximum, Hp, and plotted
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Figure 9.8: Density plots for different channel spacings s from s = 10 µm to s = 50 µm as they

were labeled directly on each plot. [p = 2 µm, b = 1.5 µm, W = 50 µm and T = 2.78 K]

it as a function of s. Again, it is difficult to extract Ha from such broad main peaks

on the Vdc density plot (Fig. 9.8). We utilized the same strategy in plotting the error

bar as was used for the cell length data. As with the p-dependence, the inverse of Hp

has a similar variation with s as ω0
H [Fig. 9.9(b)].

As shown in Figure 9.9(a), a Fourier transform applied to the data also indicates

a similar trend as shown in Figure 6.13(b) in Chapter 6. At the smaller spacing,

the field in the channel required to add one more vortex in each cell is ∼ Φ0/sp. At

the large spacing, so that the vortices in adjacent channels do not overlap, the flux

density corresponding to the matching will become independent of s, approaching a

constant ∼ Φ0/2pλ
NbN
⊥

.

During our measurements, we also found that the period, as well as the position of

those oscillations, is independent of the temperature. The period is also independent

of the NbGe thickness.
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9.3 Conclusion and future work

The dynamics of vortices in confined superconductor geometries has generated much

interest in recent years, with studies conducted of both fundamental properties of

vortex matter as well as devices based on the motion of vortices. Nanoscale channels

for guiding vortices through superconducting films with a minimal influence from

pinning have been developed for exploring vortex melting [51], commensurability [48],

mode locking [50], and ratchets [101]. These channels are typically arranged across

the width of a superconducting strip, so that the vortices enter the channel at one

edge of the strip and exit at the other edge, resulting in edge barriers to the vortex

motion through the channels [102, 103, 105]. The strip geometry also allows for the

use of multiple channel copies in parallel to boost the flux-flow signal strength for

measurement with a room-temperature amplifier.

9.3.1 Future directions and challenges

It is possible to eliminate the edge barriers characteristic of a strip arrangement by

using a Corbino geometry, consisting of a superconducting disk, with the current

injected radially between the center and the perimeter. Vortices in such a disk ex-

perience an azimuthal Lorentz force and can flow in closed circular orbits without
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crossing any edges. The Corbino geometry has been used for many studies of vortex

matter in different superconductors, including bulk crystals of YBa2Cu3O7−δ [113]

and NbSe2 [114]. We have patterned thin-film Corbino disks with submicron circu-

lar channels for probing vortex dynamics in a narrow region free from edge barriers.

Because the current density decreases radially in a Corbino geometry, such that vor-

tices at different radii experience a different Lorentz force [115], we have designed our

devices to only have a single channel. This poses a challenge for the amplifier used

to detect the vortex motion. In this section, I present a scheme for driving a small

number of vortices through a single, circular submicron channel and a picovoltmeter

for resolving the ensuing flux-flow voltages.

Corbino channel fabrication

We fabricated our channels from bilayers of 200 nm-thick films of amorphous-NbGe,

an extremely weak-pinning superconductor (TNbGe
c = 2.88 K), and 50 nm-thick films

of NbN with relatively strong pinning (TNbN
c = 9.6 K), on a Si substrate. After

patterning and etching a 1.5 mm-diameter Corbino disk into such a bilayer, we defined

a 520 nm-wide channel in a circle with a 500 µm diameter using electron beam

lithography (Fig. 9.10). We etched this region down to a depth of 120 nm using a

reactive ion etch with CF4, thus completely removing the NbN in this region and

etching partially into the NbGe layer. In addition to the circular channel, we etched

two radial channels (portals) that extend from opposite sides of the circular channel

out to the edge of the Corbino disk. These portals allow for the introduction of

vortices into the channel by field-cooling from temperatures TNbGe
c < T < TNbN

c , as

they break up the circulating supercurrent in the outer NbN region.

We attach leads for driving the bias current Ib through the Corbino disk using

1.25 mil Al wirebonds, with 32 I+b bonds around the perimeter of the disk. The I−b

connection to the center consists of a superconducting Nb wirebond using annealed

2 mil Nb wire [Fig. 9.10(c)]. The azimuthal Lorentz force from Ib causes the vortices
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Figure 9.10: (a) Corbino channel schematic. (b) Scanning electron micrograph of Corbino disk;

narrow lines at top and bottom not connected to disk. (c) Optical micrograph of disk showing

wirebonds. (d) Atomic Force Microscope (AFM) image of channel.

to flow around the channel when this force exceeds the residual pinning in the NbGe

channel. The ensuing vortex dynamics in the channel can be characterized by mea-

suring the radial voltage drop across the channel, Vx, which is proportional to the

vortex velocity and density.

Picovoltmeter design and characterization

The flux-flow voltage for vortices moving in a single channel at a low velocity can be

relatively small. For example, vortices with a density corresponding to a magnetic

induction of Bch = 1 G in the channel moving at a velocity of 1 m/s, less than one per-

cent of the typical Larkin-Ovchinnikov instability velocity for NbGe [14, 17], produce

a flux-flow voltage of ∼ 50 pV. The measurement of such small signals would not

be possible with a conventional low-noise room-temperature voltage amplifier with a

noise floor of a few nV/Hz1/2. In order to resolve these small flux-flow voltages, we
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have developed a voltmeter based on a Nb dc SQUID, which we obtained from ez

SQUID. Sensitive voltmeters were one of the original applications of SQUIDs [116],

and SQUID voltmeters have been used previously to probe the nature of the vortex

state in bulk crystals of YBa2Cu3O7 [117] and Bi2Sr2CaCu2O8+δ [118]. To the best

of our knowledge, our scheme is the first application of a dc SQUID to form a pico-

voltmeter for resolving vortex dynamics in a patterned thin-film structure, as well as

in a Corbino geometry.

We connected the voltage leads across the NbGe channel to the SQUID input coil

with a resistor, Rst, consisting of a segment of brass foil (3.7 x 3.2 x 0.025 mm3).

This converted the flux-flow voltage to a current through the input coil, which has a

self inductance Li and a mutual inductance Mi to the SQUID [Fig. 9.11(a)]. Except

for Rst, all of the voltage connections are superconducting. We made the voltage

contacts on the Corbino disk with Nb wirebonds, where the V −

x connection shares

the superconducting Nb wire to the center of the Corbino disk with the I−b connection,

while the V +
x Nb wirebond is attached to a pad of the NbGe/NbN bilayer that extends

from the perimeter of the Corbino disk [Fig. 9.10(b)]. The other ends of these Nb

wirebonds are attached to superconducting solder-tinned copper traces on our chip

carrier using Pb washers. The V +
x connection is soldered to Rst, then the traces are

attached to a twisted pair of 3 mil Nb wire with a second set of screw terminals

using Pb washers. Finally, this Nb twisted pair is coupled to the input circuit on the

SQUID holder with superconducting screw terminals.

We operated the SQUID in a conventional flux-locked loop, using a 4 MHz elec-

tronics system from ez SQUID, with the feedback signal Vfb supplied through a feed-

back resistor Rfb to a wire-wound coil with a mutual inductance Mfb to the SQUID.

The SQUID holder is mounted in a Nb cylindrical shield that is closed on one end.

The entire bottom end of the experimental insert is enclosed in a Pb cylindrical shield,

and the dewar is surrounded by a µ-metal shield that is closed on the bottom.

A simple circuit analysis leads to the following expression relating Vfb to the
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Figure 9.11: (a) Voltmeter circuit schematic; portions outside dashed box are at room temperature.

(b) Flux coupled to SQUID vs. Ib at 4.2 K. (c) Flux noise spectra above and below TNbGe
c , both

measured with Ib = 0, Ha = 0.

voltage across the channel Vx:

Vfb =

(

Rfb

Rst

)(

Mi

Mfb

)

Vx. (9.1)

The ratio Rfb/Mfb can be obtained in the usual way by measuring the difference in

Vfb with the SQUID locked in adjacent wells (590 mV), and Mi was measured to be

6.6 nH through a separate calibration. We estimated Rst to be 2 mΩ based on the

size of the brass foil, but we would be able to obtain a more careful calibration of the

voltmeter gain through a series of low-temperature measurements.

We first measured the current-voltage characteristic of the Corbino channel at

4.2 K, where the NbGe channel is in the normal state, while the NbN banks are

superconducting. Figure 9.11(b) shows the flux coupled to the SQUID plotted against

the bias current Ib, which was monitored by tracking the voltage drop across a room-

temperature current-sensing resistor. Because the channel is in the normal state, Ib

divided between the channel, with resistance Rn, and the SQUID input coil with series

resistance Rst. Based on 4.2 K measurements of similar NbGe channels of various
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geometries, we estimated Rn for this Corbino disk to be 3 mΩ.

The flux noise at Ib = 0 and zero field is essentially white with a high-frequency

roll-off determined by Li and the relevant resistance in the voltmeter circuit. By

comparing the flux noise below this roll-off for temperatures above and below TNbGe
c ,

we could obtain measurements of both Rst and Rn. Above TNbGe
c , the flux noise is

determined by the Nyquist noise current generated by Rst +Rn flowing through Mi,

while for T < TNbGe
c , the only resistance is Rst [Fig. 9.11(c)]. In both cases the

flux noise is more than an order of magnitude larger than the intrinsic flux noise

for the SQUID, 10 µΦ0/Hz
1/2 at 100 Hz and 4.2 K from a separate measurement

with the voltmeter circuit disconnected from the input coil. This analysis leads to

Rst = 1.9 mΩ and Rn = 2.6 mΩ, consistent with our rough estimates. In addition,

the location of the flux noise roll-off corresponds to Li = 110 nH, consistent with the

design of the input coil on this particular SQUID.

Applying our measured circuit and SQUID parameters with Eq. 9.1 yields a gain of

9.8×108. The measured flux noise at T = 2.854 K can be referred to as a voltage noise

across the Corbino channel of 0.55 pV/Hz1/2, more than three orders of magnitude

lower than would be possible with the best conventional room-temperature voltage

amplifier. Integrating over the 2.7 kHz bandwidth of the voltmeter yields an rms

noise level of 25 pV. Of course, this noise could be reduced further, simply by using

a smaller value of Rst, with a concomitant reduction in the measurement bandwidth.

While a smaller Rst couples a larger flux noise to the SQUID by R
−1/2
st , the gain

increases by R−1
st , according to Eq. 9.1. Thus, the voltage noise referenced in the

sample decreases like R
1/2
st .

Measurements of Flux-Flow in Corbino Channel with Picovoltmeter

We applied our voltmeter to measure the current-voltage characteristics (IVCs) of our

single Corbino channel at T = 2.874 K for several cooling fields Ha. During our mea-

surements, the Corbino disk and SQUID circuitry are immersed in a pumped helium
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bath. For each value of Ha, the insert was raised just above the bath and heated to

6 K, above TNbGe
c , and was then cooled in Ha, generated with a superconducting coil.

We recorded Vfb and Ib with a digital oscilloscope, taking 1024 averages per point

for convenience on our particular oscilloscope. Fewer averages could be used, thus

speeding up the acquisition while increasing the noise level on the acquired signal by

N−1/2, where N is the number of averages.
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Figure 9.12: (a) IVCs for two different cooling fields at T = 2.874 K. (b) Ic for different Ha,

extracted from IVCs.

The IVCs [Fig. 9.12(a)] exhibit a zero-voltage region at small Ib followed by an

increasing flux-flow voltage for Ib beyond a depinning critical current Ic. Using a

voltage criterion of 50 pV, we extract Ic(Ha), which has a peak around 1.4 mOe.

This peak points to zero absolute field, or to the limit of no vortices trapped in the

channel. In contrast to a superconducting strip, which has a moderate critical current

even in zero applied field corresponding to the entry of vortices and anti-vortices at

the strip edges from the self-field of the strip [103, 105], the Corbino disk should

have a large critical current when no vortices are present, as Ic in this case would

correspond to the breakdown of superconductivity in the entire disk.

While the values of Ha in our measurements are relatively small, the intermediate

field-cooling scheme generates substantial flux-focusing effects in the NbGe channel

due to the superconducting NbN. A rough estimate, considering screening currents

around the central disk of NbN inside the channel and along the outer NbN banks [105,
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119], indicates the enhancement of Bch may be of the order of 10 x Ha. Thus, cooling

in an absolute applied field of 1 mOe should nucleate at least ∼ 10 vortices in the

channel, where the effective area includes not only the channel, but the penetration of

the vortex circulating currents into the NbN banks as well. A more detailed treatment

of this flux focusing in the channels is beyond the scope of this paper.

Our measurements presented here have been performed close to TNbGe
c , where the

residual pinning in the channels was especially weak. This was necessary because

of our wiring configuration, where the I−b lead was shared with the V −

x connection

to the center of the Corbino disk along a superconducting Nb wirebond. This Nb

wirebond had a somewhat small critical current, thus requiring us to operate at

temperatures where Ic was below the Nb wirebond critical current. In future Corbino

measurements, it should be possible to separate these leads attached to the center

of the disk, with the Nb wirebond used only for the SQUID input connection. The

input connection does not need to sustain large currents because of the presence of

Rst, with separate Al wirebonds for the I−b connection, which does not need to be

superconducting.

9.3.2 Conclusion

We have studied vortex commensurability in the small (p < 4.5 µm) symmetric

periodic constricted weak-pinning channels as discussed in Chapter 6, and we demon-

strated the vortex ratchet effect in Chapter 7 and 8 on a relatively large cell length

(p = 4.5 µm) with asymmetric weak-pinning channels. In this Chapter, we have

shown the possibility of having a vortex ratchet rectification coexist with periodic

oscillation in our system. Oscillations are mostly appearing at small constriction pe-

riods where p . 4.5 µm, and the oscillations show strong matching peaks before the

main peak both on the critical current and the ratchet signal. Similar to the basic

ratchet effect, there are asymmetries between the hard and easy directions of the

critical current. Generally speaking, the larger critical current appeared in the hard
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direction at the field near the matching peaks. The responses of the oscillations have

been compared between the small cell length ratchets and the periodic constricted

diamond channels. The results show similar variations with both the cell length and

the spacing. The characteristic frequency varies with the cell length linearly. It has

a linear dependence on the small spacing, but it becomes independent of s when the

channel spacing is large.

The possibility of probing the flux flow in a single channel and at low velocities

by using the SQUID picovoltmeter is presented. This could be potentially useful for

measuring single-particle dynamics in ratchet potentials.

Ratchet cells of all sizes that we measured show an asymmetric transport and a

non-zero Vdc. We only see commensurability effects in the smaller ratchet cells, where

confinement plays a stronger role. It is difficult to calculate the exact vortex distribu-

tion in the channel and eventually estimate the number of the vortices based on the

applied field Ha. Without considering the screening effect or the interaction between

vortices and the two different superconductors (NbN and NbGe), the estimate will

not be able to reflect the true vortex distribution, not to mention the influence of the

step from the channel to the NbN bank. All of those difficulties are caused by the

nature of the channel geometry, the strip layout, as well as the edge barrier, factors

which cannot be easily avoided.
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