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Rectification of vortex motion in a circular ratchet channel
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We study the dynamics of vortices in an asymmetric (i.e., consisting of triangular cells) ring channel driven
by an external ac current I in a Corbino setup. The asymmetric potential rectifies the motion of vortices and
induces a net vortex flow without any unbiased external drive, i.e., the ratchet effect. We show that the net flow
of vortices strongly depends on vortex density and frequency of the driving current. Depending on the density,
we distinguish a “single-vortex” rectification regime (for low density, when each vortex is rectified individually)
determined by the potential-energy landscape inside each cell of the channel (i.e., “hard” and “easy” directions)
and “multi-vortex,” or “collective,” rectification (high-density case) when the inter-vortex interaction becomes
important. We analyze the average angular velocity ω of vortices as a function of I and study commensurability
effects between the numbers of vortices and cells in the channel and the role of frequency of the applied ac current.
We have shown that the commensurability effect results in a stepwise ω-I curve. Besides the “integer” steps, i.e.,
the large steps found in the single-vortex case, we also found “fractional” steps corresponding to fractional ratios
between the numbers of vortices and triangular cells. We have performed preliminary measurements on a device
containing a single weak-pinning circular ratchet channel in a Corbino geometry and observed a substantial
asymmetric vortex response.
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I. INTRODUCTION

A net flow of particles under unbiased external fluctua-
tions/drive due to an asymmetric potential, which is called
ratchet effect, has received much attention during the last
decades. The transport and dynamical properties of particles
on asymmetric potential have been widely studied, e.g., in
physics and biology.1–8 Random motion of particles can be
rectified in such an asymmetric system, which can be used for,
e.g., controlling particles motion, separating different types of
particles (i.e., molecular sieves), for both underdamped and
overdamped particles4 and for molecular motors.5 Vortices in
a type-II superconductor often (e.g., for magnetic field close to
Hc1) can be treated as classical overdamped “particles.” Most
of the experiments on vortex motion rectification used arrays
of asymmetric pinning sites (e.g., nanoengineered antidots or
triangular magnetic dots/inpurties) to create an asymmetric
potential, which rectifies the motion of vortices.8–14,27 The
rectified vortex motion was directly observed in experiments
by imaging vortices via Lorentz microscopy.15 Periodic ar-
rangement of point defects of a gradual density or periodic
square array of ferromagnetic dots of decreasing size, i.e.,
varying the density of pinning sites or the size of pinning
sites, were shown to result in a ratchet potential.16,17 When
vortices are trapped by pinning sites, the repulsive vortex-
vortex interaction creates a higher energy barrier near the
area with higher density of pinning sites. Therefore an
asymmetric potential can be created by the gradient of the
density of pinning sites.16 Even without spatial asymmetry
(i.e., without any asymmetric walls/boundaries or asymmetric
pinning sites), the motion of vortices still can be controlled by
time-asymmetric driving force.18–20 Due to the possibility of
controlling their motion, the dynamical behavior of vortices
in such systems has attracted considerable interest. A series of
elastic and plastic vortex-flow phases were found.21–23 Besides
the liquid-like and solid lattice phase, vortex motion also

revealed a jamming behavior.23,24 When the density of vortices
is changed, the vortex flowing direction can change to the
opposite,9,10,17,25 which means that vortices can drift in either
the “hard” direction or the “easy” direction of the ratchet,
depending on the vortex density. By controlling the motion
of vortices, it is possible to remove vortices or reduce the
vortex density by using a combination of two opposite oriented
ratchet arrays.26 The order of vortices and commensurability
between vortices and cells also play an important role in
vortex dynamics.17,23,25,27 In two-dimensional (2D) ratchets,
a transverse rectification was first predicted theoretically
in Ref. 28 and then further studied in theory4,29 and in
experiments.30,31

In the present paper, we study the dynamics of vortices in
a circular channel formed by asymmetric triangular (funnel)
cells (TCs) (see Fig. 1) [note that earlier this approach to form
asymmetric channels in experiment (i.e., using weak-pinning
channels) was employed in a stripe geometry6]. Due to the
radially flowing current in a Corbino setup,33–40 the driving
force is not uniform inside the cell, which is different from
linear ratchet channels. Such a geometry (i.e., asymmetric
in the azimuthal and radial directions), as will be shown,
leads to a specific dynamical behavior, for example, a vortex
located near the inner corner of a TC (which is closer to the
center), experiences a stronger driving force and moves to the
next TC, while a vortex located near the outer corner of TC
does not move. The circular geometry of the ratchet channel
is convenient for studying commensurability and step-motor
(phase-locking) behavior.13,23 We analyze in detail low- and
high-density regimes of rectification, i.e., “single-vortex” and
“multi-vortex” regimes. We demonstrate that the mechanism
of rectification is qualitatively different for these two cases.
In addition, we have performed preliminary measurements
using a single nanofabricated weak-pinning ratchet channel of
amorphous-NbGe (a-NbGe) with strong-pinning NbN channel
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edges in a Corbino setup, and we observed a substantial
asymmetric vortex response.

This paper is organized as follows. First, in Sec. II, the
model of our systems will be presented. Then in Sec. III,
we will show how the density of vortices and the frequency
of driving current influences the dynamical behavior of
vortices. Commensurability effects of vortex density and of
the frequency of current will be discussed in Sec. IV. We
present the measurements of a vortex ratchet in a Corbino
geometry in Sec. V. Finally, the conclusions will be given in
Sec. VI.

II. MODEL AND SIMULATION

We consider a ringlike weak-pinning channel constructed
of N partially overlapping TCs as shown in Fig. 1. In our
simulations, the radius of the ring R is typically set as 6λ,
where λ is the magnetic-field penetration depth, the wider
part of the channel (i.e., the base of TCs) w = 0.75λ, and the
width of the narrow part � (the neck) is typically 0.1 of the
wider part (i.e., the ratio g = �/w = 0.1). We also performed
simulations in a channel with a narrower neck part, e.g.,
g = 0.05, for comparison. The weak-pinning channel (where
vortices can move freely) is surrounded by a strong-pinning
superconducting material,32 which is modeled by a medium
where vortices cannot move. An external current I radially
flows from the center of the disk to the edge, resulting in the
density of current J (ρ) ∼ I/ρ. Therefore the closer a vortex
to the center of the disk the stronger the Lorentz force that acts
on it. The driving force due to the radial current is33–38

f d
i = �0I

2πρid
θ̂ = f0I0

ρi

θ̂ , (1)

where θ̂ is the unit vector in the azimuthal direction in the
disk plane, f0 = �2

0/(2πμ0λ
3) is the unit of force, I0 =

μ0λ
2I/(�0d) is the dimensionless driving current, and �0

is the flux quantum. We perform Langevin-type molecular
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FIG. 1. (Color online) The geometry of the system. The widths
of the wide part ω and narrow part � are shown in the figure, where
g = �/w is the ratio between the two parts. Here, g = 0.1, the radius
of the channel R = 6λ, and the channel is constructed by 36 TCs,
i.e., N = 36.

dynamics (MD) simulations and numerically integrate the
overdamped equations of motion:37,38,41,42

η
d r i

dt
= f i (2)

with

f i =
∑

j

f vv
ij + f T

i + f d
i + f b

i , (3)

where η is the dimensionless viscosity coefficient, which is set
here to unity. (Note that the viscosity coefficient varies in dif-
ferent superconductors, e.g., in a-NbGe, η ≈ 10−8 Ns/m2.43)
Using this value of η in our calculations results in typical
maximum values of vortex linear velocity v ≈ 102/m/s (for a
1-μm-thick film) which is still below the Larkin-Ovchinnikov
critical velocity.44,45

The vortex interaction f vv
ij is described by a first order of

the modified Bessel function of the second kind K1(rij /λ), and
the thermal force obeys

〈
f T

i (t)
〉 = 0 (4)

and 〈
f T

i (t) f T
j (t ′)

〉 = 2ηkBT δij δ(t − t ′). (5)

To model the vortex-boundary interaction, we assume an
infinite potential wall at the boundary (i.e., vortices cannot
leave the channel) which decays inside the triangular cell
with the same dependence on position as the vortex-vortex
interaction potential. The total interaction of a vortex with
the channel boundaries is calculated by integrating the vortex-
wall interaction potential over the geometrical boundary of
the channel. The resulting potential due to the boundary is
shown in Fig. 2, and the vortex-boundary force f b

i is directly
calculated from the potential.

In our simulations, we first set T > 0, when no current
is applied, and then gradually decrease temperature to let
the system to relax to the ground state. Then we set T = 0
and apply an external driving, i.e., an ac current resulting in

FIG. 2. (Color online) The contour map of the modeled potential.
The lowest potential in a TC is close to the geometry center of the
triangle and the potential near the boundary is high enough to prevent
vortices from escaping the TC.
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oscillating Lorentz force with frequency ν and amplitude I0

that acts on vortices, to study the dynamics of the system.

III. RECTIFICATION OF VORTEX MOTION

A. Density of vortices

The vortex density, i.e., the number of vortices per TC,
plays an important role in the dynamics of the system. For
very low vortex density, the vortex-vortex interaction is small
as compared to the interaction with the boundary, and therefore
it can be neglected. With increasing the vortex density, the
interaction between vortices becomes important. Therefore,
we roughly distinguish two regimes, i.e., a single-vortex
regime and a multi-vortex regime, respectively, corresponding
to low- and high-vortex densities.

In order to characterize the dynamical behavior of the
system of vortices, we calculate the net angular velocity
(normalized on the number of vortices L) of each vortex and
take average over all the vortices for, e.g., 100 ac periods.
The resulting average angular velocity (called further “angular
velocity”) is denoted as ω, which is analyzed for different
parameters of the system and drivings. Note that angular
velocity is related in a straightforward way to the flux-flow
voltage,32,33 which can be measured in experiment.

One system contains L vortices and N triangles in a circular
chain, e.g., in our simulations, we take N = 36. If there is less
than one vortex per cell, i.e., L < 36 in our system (see Fig. 1),
then the density of vortices is low enough and one can neglect
the interaction between vortices. One can imagine that all the
vortices are far away from each other and weakly interact with
other vortices but they are strongly influenced by the ratchet
potential induced by the boundary. Therefore the dynamical
behavior in the low-density case is similar to that of the system
with just one vortex [shown in Fig. 3(a)], which is considered
in the single-vortex regime. Thus, for L = 1–36, the maximum
of the angular velocity has the same value [see Fig. 3(a)]. When
the density increases and therefore the interaction between the
vortices becomes appreciable, the maximum of the angular
velocity ωm first decreases to 0.05 for L = 55 [see Fig. 3(b)]
and then starts to increase [see Fig. 3(c)] when the system turns
to the regime of high-vortex density.

To understand this nonmonotonic behavior of the maximum
of the angular velocity ωm [shown in Fig. 3(d)], we studied
the trajectories of moving vortices. When the system is in
the single-vortex regime, where L � 36, all the vortices move
along a nearly circular trajectory no matter whether the applied
current is small or large, which can be considered as a one-
dimensional (1D) motion (shown in Fig. 4). For low driving
currents, each vortex oscillates near its initial position inside
a TC [e.g., see Fig. 4(a)], and when the driving force reaches
some critical value, all the vortices move with a net angular
velocity ω in the easy direction [e.g., see Fig. 4(b)]. However,
in the multivortex regime, i.e., the high-density case (e.g.,
L = 80), the motion of vortices is not 1D any more. The ac
current drives vortices to pass through the narrow part (i.e.,
neck) of the channel in the easy direction and when the current
is alternated, some of the vortices are forced to move into the
corner by the others and “freeze” thus blocking the motion in
the hard direction [shown in Fig. 5]. Due to the asymmetry

FIG. 3. (Color online) The ω-I0 curves for different density of
vortices: (a) the density of vortices is low, L = 1–36 (in the single-
vortex regime), the angular velocity reaches the same maximum,
(b) the density increases, L = 40–55, the maximum of the angular
velocity decreases, (c) for further increasing density, i.e., high density
of vortices, L = 55–90, the maximum starts to increase and the
critical value of the driving current, when the angular velocity starts
decreasing, becomes larger, (d) the maximum of the angular velocity
ωm first remains the same until the number of vortices L > 36.
Then the maximum ωm first decreases, but for L > 55, it starts to
increase.
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FIG. 4. (Color online) Trajectories of vortex motion, in the case
of the low density of vortices (L = 10) (a) and (b), in the intermediate
case (L = 40) (c) and (d), for different values of driving current: I0 =
6.5 (a), 13 (b), 9 (c), and 18 (d). The initial positions of the vortices are
marked by the gray circles and the final positions after one period of ac
current are marked by the black squares. The trajectories of vortices,
which are plotted by solid lines, are nearly circular no matter whether
the current is large or small.

in the radial direction and radially decreasing current density
in the Corbino setup, a vortex near the inner corner, which is
closer to the center of the disk, moves faster than the one near
the outer corner. Therefore, at a specific value of the current
[e.g., at I0 = 9, as shown in Fig. 5(a)], the vortex near the
inner corner has a larger angular velocity. When the current
increases, more and more vortices move along the circular
trajectory and the distribution of vortices becomes strongly
inhomogeneous [shown in Fig. 5(b)]. With further increasing
current, this 2D trajectory becomes narrow and all the vortices
move along the circle, i.e., the 2D motion becomes 1D [shown
in Fig. 5(c)]. With increasing density, more and more vortices
remain in the area near the corners of TCs and block other
vortices moving in the hard direction. Therefore the maximum
of vortex angular velocity increases. Even in the descending-
velocity region of the single-vortex regime [see e.g., when
I0 > 21 in Fig. 3(c)], the angular velocity is still large.

The maximum of the angular velocity ωm for different
vorticities L is shown in Fig. 3(d). In the single-vortex regime
(i.e., for not more than one vortex per TC, when the intervortex
interaction is negligible), ωm remains almost the same, ωm =
2π/36 ≈ 0.175, i.e., in a single cycle, each vortex moves
over one TC. When L becomes larger, there are more than
one vortex per TC and the repulsive vortex-vortex interaction
in the same TC makes the 1D motion in either easy or hard
directions much easier, due to incommensurability (see, e.g.,
Refs. 21 and 22). Therefore ωm first decreases when L > 36.
However, for L � 55, the maximum ωm starts to increase.
The reason for this behavior is the transition from 1D motion
to 2D motion. When vortices move along 2D trajectories (see
Fig. 3), the repulsive interaction between vortices still “helps”
a vortex to move to the next TC in the easy direction but blocks
the vortex motion in the hard direction until applying a large
enough driving current. Our estimates show that for even larger
L, i.e., for L � 120, the maximum of the angular velocity ωm

starts to decrease. This is explained by the fact that for high
vortex densities, vortex configurations inside the TCs become
more rigid, which prevents vortex motion in either direction
and thus leads to the suppression of rectification. However,
in this analysis, we restrict ourselves to relatively moderate
vortex densities when the London approximation is still valid.

The radial asymmetry facilitates the motion of vortices from
inner/outer corners (driven by stronger/weaker force) one by
one. This is different from the case of a linear ratchet channel
where two vortices in the corners are driven by the same
force and, as a result, arrive simultaneously at the neck region
leading to jamming. In an asymmetric channel, the symmetry
is broken, and jamming occurs only for rather large driving
force.

B. Frequency dependence

The dynamical behavior of vortices in the considered
ratchet system is also strongly influenced by the frequency
of the ac current. In this section, we study the frequency
dependence of the rectified vortex motion. For different
frequencies ν, the ω − I0 curves are shown in Fig. 6.

When the frequency is low, the dynamical behavior is
similar for different vortex densities. As the drive amplitude
I0 is increased, the angular velocity first increases, reaches a
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FIG. 5. (Color online) Trajectories of vortex motion during one ac period in the case of high density of vortices (L = 80), i.e., the multivortex
regime, for different values of the driving current, I0 = 9 (a), 27 (b), and 36 (c). When the current is in a certain range I0 = 5–19 [see Fig. 3(c)],
the vortices move along a 2D trajectory [e.g., I0 = 9, shown in (a)], which is different from the circular 1D trajectories in the low-density case.
With increasing current, more vortices start to move along circular trajectories and thus 2D trajectories finally turn to a 1D circle [e.g., see (c)].
During the transition from the 2D to 1D motion, the distribution of vortices becomes inhomogeneous [shown in (b)].

maximum, and then decreases to zero. The curves, especially
for L = 1, in Fig. 6(a) are similar to the analytic result in
a ratchet potential (e.g., see Fig. 2 in Ref. 26). In the case

of L = 1, the first critical value of current Ic1 [shown in
Fig. 6(a)] corresponds to the maximum friction in the easy
direction f +

m and the second one Ic2 corresponds to the case

FIG. 6. (Color online) The ω-I0 curves for different frequencies: ν = 0.1 (a) and (b), ν = 1 (c) and (d), and ν = 10 (e) and (f). (a), (c), and
(e) are in the system with a wider neck, g = 0.1, and (b), (d), and (f) are in the system with a narrower neck g = 0.05. The scale of ω in panel
(d) is different from the others. For low-frequency current (e.g., ν = 0.1), the ratchet effect is clearly seen [as shown in (a) and (b)]. In this
case, the angular velocity first increases continuously to the maximum and then decreases to zero. For intermediate frequency ν = 1, besides
the ratchet effect, the effect of commensurability, i.e., discontinuity in the angular velocity ω(I0) (see Sec. IV), has a clear influence on the
ω-I0 curve [e.g., see (c) and (d) for L = 1 or 10]. For high-frequency current (e.g., ν = 10), vortices are confined in their initial TCs and only
oscillate in a single potential well. Therefore the effect of the periodic ratchet potential disappears [shown in (e) and (f)].
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when the driving force reaches the maximum friction in the
hard direction f −

m . When L = 40, the first critical value of
current decreases to I ′

c1, which means vortices are easier to
move in the easy direction. If the density increases further, I ′

c1
decreases and I ′

c2 increases, for L = 80 [shown in Fig. 6(a)].
Therefore the interaction between vortices allows vortices to
move even easier in the easy direction and harder in the hard
direction.

For an intermediate frequency [e.g., ν = 1 as shown in
Fig. 6(c)], when the distance a vortex moves during one
period is comparable to the size of a TC, the dynamical
behavior of vortices will depend not only on the driving
force but also on the vortex density. This is explained by
the fact that the confinement force due to the boundary and
the vortex-vortex interaction is also comparable. In this case
we obtain different dynamical behavior in the single-vortex
and multivortex regimes that were discussed in the previous
section. Due to the commensurability between the numbers of
TCs and vortices, a step structure of the ω-I0 curve is revealed
in the low-density case (e.g., L = 1 and 10), which will be
discussed in more detail in Sec. IV.

As one can predict, the angular velocity becomes zero
[see Fig. 6(e)] when the frequency is high enough because
a vortex oscillates near its initial position inside a cell and
thus its motion cannot be rectified. Therefore the variation
of the angular velocity is much smaller than that in the
low/intermediate frequency case. Each vortex is localized in
a specific TC, i.e., the vortex is only influenced by a single
potential well but not by the ratchet potential.

For comparison, we also calculate ω-I0 curves for the
case when a TC has a narrower connection part (g = 0.05)
[shown in Figs. 6(b), 6(d), and 6(f)]. The function ω(I0) in
general shows a similar behavior as for g = 0.1. However,
for the intermediate frequency (ν = 1) of the applied current,
we obtain more steps in ω-I0 curve in the case of L = 1
[shown in Fig. 6(d)] than that for g = 0.1 [shown in Fig. 6(c)].
This relates to the commensurability effect that will also be
discussed in Sec. IV.

IV. COMMENSURABILITY EFFECT

A. Commensurability of vortex density

As we defined above, the system contains L vortices and
N triangles in a circular chain. If there is a common integer
(except one) in terms of which two numbers L and N can
both be measured, then they are commensurate. Otherwise,
they are incommensurate. Figure 7 shows the average angular
velocity ω as a function of I0 for different commensurate ratios.
The ascending part of the ω(I0) curves (i.e., where ω versus
I0 increases) is stepwise. Besides the large steps of angular
velocity in the ω-I0 curve for L = 1, which we refer to as
“integer steps,” we also found smaller steps for some specific
vorticities L (shown in Fig. 7). If L/N = k/m and k �= 1,
where k and m are incommensurate integers, the small steps
can be found in the ω-I0 curves [in Figs. 7(b)–7(d)]. Note
that these steps can also be observed in the descending part of
the ω(I0) curves, although they are less pronounced [i.e., for
L = 1 in Fig. 7], and for large drivings (and small ω), these
“steps” can be seen as oscillations in ω(I0). The origin of these
steps as well as those in the descending part of the function

FIG. 7. (Color online) The ω-I0 curve for a channel with g = 0.1
and different k: k = 1 (a), 2 (b), 3 (c), and 5 (d). L is the vorticity, i.e.,
the number of vortices. N is the number of cells in the circular chain.
If L/N = 1/m, e.g., L = 1,36, the ω-I0 curve shows several steps
and the height of each integer step is ω0. When L/N = k/m (k = 2,
3, 5), the height of each fractional step is ω0/k [e.g., as shown in (b),
(c), and (d)].

ω(I0) is explained by commensurability effects between the
vortex-traveling distance and the size of the TC. However, for
large drivings, a vortex travels an additional “loop” without
being rectified.

When k = 1, we observe only integer steps of the angular
velocity ω(I0) [in Fig. 7(a)]. The difference in the angular
velocity between two adjacent steps is always ω0. If k �= 1,
then we can find a fractional step whose magnitude is ω0/k.
For example, for k = 2 [shown in Fig. 7(b)], the smallest step
is ω0/2 in the system with 72 vortices (i.e., L = 72), which is a
half of that for k = 1 (e.g., when L = 36). In the case of k = 1,
a unit cell contains only one vortex. [The “unit cell” (UC) is a
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FIG. 8. (Color online) (a) The configuration of 24 vortices after 1000 periods of oscillations, t = ti . The moving trajectories of vortices
in one period of ac current, i.e., from t = ti to t = ti + T , is shown for I0 = 10 (b), 13 (c), and 15 (d). The insets of (a)–(d) show the vortex
distribution in a unit cell. For L = 24, a type-A vortex is the vortex in a triangular cell (TC) [e.g., TC C2 in the inset of (a)] that has a neighbor
empty TC in the easy direction [e.g., TC C3 in the inset of (a)], i.e., a TC without vortex, while a type-B vortex is in a TC [e.g., TC C1 in the
inset of (a)] that neighbors a TC with type-A vortex inside. When the current drives vortices in the easy direction (e.g., I0 = 10), two types
of vortices move in different ways. Type-A vortices move from C2 to C3 but type-B vortices do not move to C2 due to a larger repulsive
interaction in the easy direction (b). When I0 = 13 (c), ω = ω0 is the same as the integer step in ω-I0 curve [see Fig. 7(b)]. The type-A (type-B)
vortex moves over one TC and remains type A (type B) at the end of the period. If the current increases further, e.g., I0 = 15, type-A and
type-B vortices move with different net angular velocities, and after every period they switch their type [shown in (d)].

minimum repeatable set of TC(s) containing an integer number
of vortices. For example, for L = 1 the UC is the entire channel
with one vortex, and for L = 36 the UC is one TC with one
vortex.] If one vortex can overcome the potential barrier and
move in the easy direction, all the vortices can do so at the
same time, i.e., collectively. This results in integer steps of
the average angular velocity ω0 in the ω-I0 curve. However,
fractional steps appear when there are more than one vortex in
each UC. For instance, a UC contains one TC with two vortices
when L = 72, and if L = 24, the UC is constructed by three
TCs with two vortices. In general case, the unit cell contains
m TCs with k vortices inside. If k > 1, there are more than one
vortex in the UC, and those vortices are not equivalent, i.e., they
are not located at the equivalent position in the TC and/or they
experience different interactions with the boundary. Therefore
they move with different angular velocities in each period.
Let us take k = 2, for example (see Fig. 8). As shown in

Fig. 8(a), the vortices located in a TC that is followed by an
empty TC in the easy direction (type A) can overcome the
potential barriers in a period of alternating current and move
to its neighbor TC while the others (type B) are still localized
in its original TC. When I0 = 10 [shown in Fig. 8(b)], type-A
vortices move from C2 to C3 but type-B vortices only oscillate
in C1. In the view of the whole circular channel, only one-half
of vortices (i.e., type-A vortices) move to another TC while
the other half of vortices (i.e., type-B vortices) do not move.
After that, the type-B vortices are located at a similar position
as type-A vortices in the previous cycle, i.e., the previous
type-B vortices now become type-A vortices and they will
move to next TC in the counterclockwise direction during
the next period. Therefore, when we calculate the average
angular velocity for all the vortices, the value is one-half of
the angular velocity of type-A vortices, i.e., ω0/2. If the current
increases, every vortex can overcome the barriers and move
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FIG. 9. (Color online) The effect of temperature fluctuations: the
ω-I0 curves for different temperatures for (a) L = 18 and (b) L =
24. Both the integer and fractional steps are smeared out, i.e., the
commensurability effect is reduced by increasing temperature. When
large enough, the thermal fluctuations reduce the ratchet effect, e.g.,
for L = 24 and T = 5 × 10−3 (b).

to the neighbor TC [e.g., as shown in Fig. 8, type-A vortices
move from C2 to C3 and type-B vortices move from C1 to C2
when I0 = 13]. Then the average angular velocity becomes ω0,
which is the same as that for k = 1, when all vortices move to
the neighbor TC.

We also analyze the effect of the thermal fluctuations on
rectification. For this purpose, we performed simulations for
few nonzero values of temperature. When the temperature
increases, the ω-I0 curves become smoother (see Fig. 9)
since the effect of commensurability is suppressed by thermal
fluctuations. Both the integer steps and fractional steps become
smeared out due to the fluctuations. The ratchet effect becomes
weaker with increasing temperature, e.g., for L = 24 at T =
5 × 10−3, as shown in Fig. 9(b). Note that the considered
dimensionless values of temperature correspond to real tem-
peratures below 1 K, which are well below the superconducting
transition temperature Tc of our weak-pinning channels.

B. Commensurability effect of frequency

Further we analyze the angular velocity evolution while
varying the ac drive frequency (shown in Fig. 10). For varying
frequency ν, the ω-ν curves are characterized by peaks and/or
oscillations. Let us clarify this behavior. As discussed in
Sec. III, if f −

m > f d > f +
m , vortices can move in the easy

direction and be frozen/blocked in the hard direction when
the current alternates. Let us introduce a time scale T0 to
characterize the motion of a vortex over the entire TC. One
TC occupies an angle θ0 = 2π/N . If we assume that a vortex
moves over the entire TC to the equivalent position in the next
TC, then T0 should satisfy the following condition:

∫ T0

0
ωdt =

∫ T0

0
[ f d (I0) + f b + f vv] · θ̂dt/ηr = θ0, (6)

where θ̂ is the unit vector in the azimuthal direction. In the
single vortex case (L = 1), we set f vv = 0, and θ0 is a constant.

Considering the circular trajectory of the moving vortex, the
integral of f b is also a constant. Therefore T0 only depends on
the current I0 and we use the notation T0(I0) instead of T0 in
order to show the dependence on the driving current.

If f −
m > f d (I0) > f +

m and the ac period t = 2T0(I0) =
t0(I0), then the rectified signal will be maximum since all
the vortices coherently move over the entire TC in the easy
direction during the first half period and do not move backward
in the next half period. Then we can obtain the principal period
t0(I0) = 2T0(I0) for each value of the current and roughly
estimate forces f −

m and f +
m from the ω − ν or ω − t curves

[as shown in Fig. 10]. The maximum angular velocity ωm for
different current and vorticities L is shown in the insets of
Fig. 10. For example, in the case of L = 1 [see Fig. 10(a)], the
angular velocity is always zero when I0 � 8 and becomes
nonzero for I0 = 10, i.e., the vortex starts to move in the
easy direction. Therefore f d (I0 = 8) < f +

m < f d (I0 = 10).
However, for I0 � 22, the maximum angular velocity ωm

decreases as compared to the case for I0 = 20, which means
f d (I0 = 20) < f −

m < f d (I0 = 22). For f d (I0) > f −
m , when

driving current increases, vortices move backwards (i.e., the
motion in the hard direction) therefore is resulting in the
decreasing net angular velocity. For example, when I0 = 22
[shown in Fig. 10(a)], the maximum ωm becomes smaller and
the jumps in the ω-t curves become smoother, which means
the effect of boundary becomes weaker under a strong driving
force. Therefore the angular velocity should be zero when
the driving force goes to infinity. It explains why the angular
velocity decreases and goes to zero when the driving current
increases above some critical value.

For the single-vortex case, the frequency dependence of
the first local maximum ω′

m in the ω-ν curves versus the
corresponding drive frequencies, ν0 = 1/t0, is plotted in
Fig. 11, which shows a linear behavior. When the density is
increased up to one vortex per cell (L/N � 1), the ω-t curve is
similar to the one for L = 1 for both incommensurate [e.g., see
Fig. 10(b)] and commensurate cases [see Fig. 10(c)] because
the interaction between vortices is weak. For a higher density,
the (in-)commensurability effect becomes pronounced. The
sharp jumps of the angular velocity are obtained only in the
commensurate case [e.g., L = 72 shown in Fig. 10(e)] but not
in the incommensurate case [e.g., L = 80 shown in Fig. 10(f)].
Comparing the high-density cases with the low-density cases,
we can conclude that sharp jumps in ω-t curve, which are
both found in single-vortex and multivortex regimes, are due
to the effect of periodically repeated boundaries of the ratchet
potential and the increasing local maximum of the angular
velocity when t increases in the multivortex regime. This
is different from the single-vortex regime, because of the
strong interaction between vortices induced by the high vortex
density. If the principal period (i.e., the time period for the
first jump) is denoted by t0, the others will be harmonics of t0,
kt0 (k = 2,3, . . .).

V. EXPERIMENTAL DETECTION OF VORTEX RATCHET
EFFECT IN A CORBINO GEOMETRY

To the best of our knowledge, to date there have been
no demonstrations of a circular ratchet with vortices in a
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FIG. 10. (Color online) The ω-t curves in a channel with g = 0.1 for different density of vortices: L/N � 1 (a), L/N < 1 (b), L/N = 1
(c) (commensurate), 2 > L/N > 1 (d), L/N = 2 (e) (commensurate), and L/N > 2 (f). When the density L/N � 1, i.e., in the single-vortex
regime, the angular velocity ω(t) first reaches the maximum and then oscillates [see (a), (b), and (c)]. With increasing current, the maximum
velocity increases until the driving force reaches a value larger than f −

m . For high density, the angular velocity ω(t) does not reach the maximum
because the vortex motion in the easy direction is compensated by that in the hard direction. ω(t) increases when the frequency decreases. In com-
mensurate cases [(c) and (e)], ω(t) oscillates with sharp jumps, which are not observed in incommensurate cases for high vortex density (f).

superconductor. In fact, there are very few experimental
examples of ratchets for producing circular motion in any
particle system. Thus to demonstrate the feasibility of the
approach employed in our simulations, we have performed
preliminary measurements on a device containing a single

weak-pinning circular channel for guiding vortex motion
in a Corbino geometry. This is based on a technique for
using weak-pinning channels with tailored edges to produce
asymmetric vortex confining potentials. Such an arrangement
resulted in substantial asymmetric vortex response for linear
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FIG. 11. (Color online) The frequency dependence of the first
local maximum ω′

m of the ω-t curves for vortices in the single-vortex
regime when the driving force is smaller than f −

m . The magnitude of
the first peak shows a linear dependence on the principal frequency
ν0.

channels on a strip geometry.6 The Corbino sample consists
of a Si substrate with a 200-nm-thick film of weak-pinning
a-NbGe and a 50-nm-thick film of strong-pinning NbN on top.
The fabrication followed the scheme of previous weak-pinning
channel devices,6,32 with the 1.5 mm-diameter Corbino disk
pattern etched through the entire superconducting bilayer.
The 500-μm-diameter circular chain of triangular cells was
etched through the NbN layer (see Fig. 12), thus defining the
weak-pinning a-NbGe channel region for vortex flow.

Wirebonds were attached between the center and perimeter
of the Corbino disk for injecting a bias current with a
radial flow. Because of the rather small flux-flow voltages
for vortex motion in a single channel, it was necessary to
use a custom picovoltmeter based on a dc SQUID operated
in a flux-locked loop.32 Measurements of the noise power at
different temperatures were used to calibrate the value for the
series resistance at the SQUID input, thus allowing for a mea-
surement of the system gain, as described in Ref. 32. During
the measurements, the sample and SQUID were immersed in
a pumped liquid helium bath. Shielding of external magnetic
fields was achieved with a μ-metal shield surrounding the

FIG. 12. (Color online) (a) Detail of a single ratchet cell of
channel and schematic of a Corbino ratchet chip layout; extra pads
and leads beyond disk were not used for the measurements presented
here. (b) Atomic force microscopy image of a portion of Corbino
ratchet channel. (c) Scanning electron micrograph of a portion of
Corbino ratchet channel.
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FIG. 13. (Color online) Current-voltage characteristic of a
Corbino ratchet channel cooled to 1.60 K in an external magnetic
field of 0.26 Oe as described in text.

dewar and a superconducting Pb shield around the sample
and SQUID on the bottom of the cryogenic insert. Vortices
were introduced into the channel by temporarily raising the
sample above the helium bath, heating to ∼6 K—between
T NbGe

c = 2.88 K and T NbN
c ≈ 10 K—while applying a small

magnetic field with a Helmholtz coil on the insert, then cooling
back down below T NbGe

c .
Upon reaching the desired measurement temperature, the

bias current was varied incrementally and the flux-flow voltage
sensed by the SQUID was recorded for each current value.
Such current-voltage characteristics (IVC) exhibited substan-
tial asymmetries between the critical current for vortices to
begin to move through the channel for the two directions.
This asymmetry persisted down to the lowest measurement
temperature, 1.60 K, well below the onset of superconductivity
in the channel at T NbGe

c (see Fig. 13). The larger critical
current corresponded to the sense of vortex motion in the hard
direction through the ratchet cells. Due to experimental wiring
limitations on these preliminary measurements of a Corbino
ratchet channel, it was not possible to sweep the bias current
with an oscillatory drive to study the average flux-flow voltage
over a cycle. Nonetheless, the large asymmetry between the
two senses of critical current demonstrates the potential for a
weak-pinning ratchet channel in a Corbino geometry to rectify
vortex motion.

Thus this provides a motivation for future experiments
employing the weak-pinning channel system in a Corbino ge-
ometry with a wiring setup optimized for ac driving to explore
the various phenomena demonstrated by our simulations.

VI. CONCLUSIONS

A vortex moving in an asymmetric circular channel in a
Corbino setup experiences the confinement of the boundary,
the repulsive interaction due to other vortices and the gradient
(i.e., radially decreasing) driving force when an external
current is applied. The combination of these factors determines
the vortex motion. Different dynamical behavior is observed
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in low- and high-density systems, which are referred to as
“single-vortex” and “multivortex” regimes, respectively. For
low density, i.e., in the single-vortex regime, there is no more
than one vortex per triangular cell so that the vortex-vortex
interaction is negligible. Therefore the ratchet potential due to
the boundary dominates and all the vortices follow circular 1D
trajectories. Since all the vortices still move in 1D, there is more
than one vortex per cell (i.e., a higher density), a vortex can
escape even easier either in the easy or in the hard direction due
to the interaction between vortices in the same cell. This results
in decrease of the rectified net current. However, when the
number of vortices increases further (i.e., in the“multivortex”
regime of rectification when the rectified net current increases
with the vortex density), the trajectories of vortex motion for
low driving currents are 2D while these trajectories squeeze
and turn to 1D circle with increasing driving current. Because
of the circular geometry of the channel, the density of vortices
first becomes inhomogeneous [i.e, see Fig. 5(b)] during the
transition from 2D to 1D motion in the multivortex regime and
then becomes homogeneous again when all the vortices move
in a circular trajectory.

Considering the asymmetry in the radial direction, vortices
near the inner/outer corner of the triangular cells (TCs) (i.e.,
closer/further to the center of the disk) are driven by different
Lorentz forces and for some specific value of driving current
the vortex in the outer corner moves to the inner corner while
the one in the inner corner moves to the next TC [e.g., see
Fig. 5(a)]. This kind of motion prevents vortices from arriving
simultaneously at the narrow part that would lead to jamming
that occurs in case of a linear channel. When the density
increases, the maximum net angular velocity ωm remains the
same in the single-vortex regime and then decreases until
reaching the multivortex regime, and then ωm increases.

The frequency of driving current also strongly influences
the vortex dynamical behavior. The ac frequency determines
the possible distance a vortex moves during an ac period. For
high frequency, a nearly zero net angular velocity is obtained
for different values of driving current I0. Each vortex is unable
to overcome the energy barrier and is confined by a single
potential well instead of the periodic ratchet potential. When
the frequency is low, the ratchet effect is clearly observed in the

ω-I0 curve but the commensurability effect is not present. For
an intermediate frequency of driving current under which the
distance of moving vortex in a period is comparable to the size
of the TC, both the ratchet effect and the commensurability
effect have been observed.

Besides the vortex density and the frequency of current,
the commensurability between the numbers of vortices and
TCs also plays an important role in the dynamical behavior of
vortices, which leads to jumps in the angular velocity ω with
increasing driving current I0 (i.e., steps in the ω-I0 curve).
Therefore under some specific conditions, the average angular
velocity of vortices is not a continuous function of the driving
current. The commensurability also influences the minimum
difference of the angular velocity for different steps in the ω-I0

curve, and results in integer steps (i.e., the large steps that are
found, e.g., for vorticity L = 1) and fractional steps (i.e., the
smaller steps whose magnitudes are fractions of the magnitude
of the integer steps, e.g., for vorticity L = 24) in a certain range
of the current. We also obtained several peaks (sharp jumps)
in the ω-t curve, which correspond to the principal period t0
(during which the vortex can move over one TC in the easy
direction), and harmonic periods kν0 (k = 2,3, . . .) (during
which vortices move over k TCs in the easy direction). The net
flow of vortices is enhanced when the ac period is one of the
harmonic periods, i.e., the average angular velocity reaches a
local maximum.
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