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Quantum theory of three-junction flux qubit with non-negligible loop inductance: Towards
scalability
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The three-junction flux qubit �quantum bit� consists of three Josephson junctions connected in series on a
superconducting loop. We present a numerical treatment of this device for the general case in which the ratio
�Q of the geometrical inductance of the loop to the kinetic inductance of the Josephson junctions is not
necessarily negligible. Relatively large geometric inductances allow the flux through each qubit to be con-
trolled independently with on-chip bias lines, an essential consideration for scalability. We derive the three-
dimensional potential in terms of the macroscopic degrees of freedom, and include the possible effects of
asymmetry among the junctions and of stray capacitance associated with them. To find solutions of the
Hamiltonian, we use basis functions consisting of the product of two plane wave states and a harmonic
oscillator eigenfunction to compute the energy levels and eigenfunctions of the qubit numerically. We present
calculated energy levels for the relevant range of �Q. As �Q is increased beyond 0.5, the tunnel splitting
between the ground and first excited states decreases rapidly, and the device becomes progressively less useful
as a qubit.
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I. INTRODUCTION

A superconducting loop interrupted by a single Josephson
tunnel junction was originally proposed for the investigation
of macroscopic quantum coherence.1 At a flux bias of �n
+1/2��0 ��0�h /2e, n is an integer� and appropriate device
parameters, this device has two degenerate states correspond-
ing to opposite senses of supercurrent circulating around the
loop. Coherent tunnel coupling leads to superpositions of
these two circulating current states with distinct energy lev-
els. As the flux bias is moved away from the degeneracy
point, the ground and first excited states approach the clock-
wise and anticlockwise circulating current states. The first
experimental evidence for the quantum superposition of two
macroscopic flux states was realized in this device.2 In these
experiments the junction critical current needed to be ad-
justed with a second magnetic flux. Furthermore, the tunnel
coupling between the ground states in the potential was van-
ishingly small, so that the measured superpositions were
formed between highly excited states in the two wells, add-
ing complexity to the manipulation of the quantum state of
the device. Nonetheless, the formation of superpositions of
states through the tunnel coupling enables this single-
junction device to behave as a flux quantum bit �“qubit”�.
Subsequently, a second kind of flux qubit was proposed, con-
sisting of three Josephson junctions in series interrupting the
loop.3 In the case of the three-junction flux qubit, it is pos-
sible to have a substantial tunnel coupling between the
ground states in the two degenerate potential wells; this cou-
pling is determined by the relative sizes of the junctions
which are set during fabrication, thus eliminating the need to
tune the critical currents precisely. In addition, the loop in-
ductance of the three-junction flux qubit can cover a wide
range, while still providing a reasonable tunnel coupling. For
either kind of qubit, a superconducting quantum interference
device �SQUID� is used to measure the flux generated by the
circulating current, thus detecting the qubit state.

The splitting between the qubit ground and first excited

state is typically several gigahertz, so that the flux qubit can
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be controlled with microwave pulses. Several groups have
used microwave spectroscopy to map out the splitting by
measuring the resonance frequency as the qubit flux bias is
varied.4–6 Furthermore, for a fixed flux bias in the qubit, one
can manipulate the flux qubit state coherently to generate
Rabi oscillations, Ramsey fringes, and echoes.6–8 To produce
the desired energy levels, flux qubits generally have small
junction capacitances, typically a few femtofarads. As a re-
sult, the junctions are submicron, with typical linewidths of a
few hundred nanometers. The Al-AlOx-Al junctions used to
date have been produced with masks made with electron-
beam lithography and a double-angle shadow evaporation
technique.9 Nominally identical junctions often vary signifi-
cantly in area and thus in critical current and capacitance,
and may have non-negligible stray capacitances. Thus, it is
important that a complete theory for the three-junction flux
qubit be able to account for such asymmetries and parasitic
capacitances.

An important challenge to implementing an array of flux
qubits is the requirement for a scalable flux biasing scheme.
Although nanofabrication techniques allow one to place
many qubits on a single chip, it is essential to be able to bias
each qubit independently6 while maintaining an appropriate
flux in the readout SQUID�s� to ensure high sensitivity.
Thus, each qubit requires its own on-chip flux bias line,
coupled to a current supply, as does each readout SQUID. In
practice, these flux lines need not be independent since one
can sum the flux bias currents in combinations determined by
the various mutual inductances between the flux lines and the
qubits and SQUIDs to bias any given device with the desired
flux. However, to supply a flux of the order of �0 to a given
element, its mutual inductance with the flux bias line must be
large enough to ensure a bias current that is not too high. For
example, a bias current of 1 mA requires a mutual induc-
tance of 2 pH with a given loop to generate a flux �0 in it.
This requirement, in turn, implies that the loop inductance
must be tens or even hundreds of picohenries. Schemes to

entangle qubits may also benefit from relatively large induc-
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tances, which increase the coupling energy.10 Such induc-
tances are much larger than those used in early experiments,
in which the geometrical inductance LQ �a few picohenries�
was negligible compared with the Josephson inductances.
Thus, it is necessary to develop a theory that is valid for
arbitrary ratios of the geometric and Josephson inductances.

The initial theoretical study of the energy levels arising
from the macroscopic degrees of freedom of the three-
junction flux qubit reduced the problem to two dimensions
by neglecting the qubit loop inductance.11 Subsequently, the
effect of small, but nonzero, loop inductance was included
perturbatively.12 Another treatment involved expansions in
powers of the inductive terms to produce an effective Hamil-
tonian for evaluating interaction energies between flux
qubits.13 The inductive energy for three-junction flux qubits
was considered by You et al.,14 but the calculations were still
performed in the two-dimensional approximation, which ne-
glects the contribution to the action from the third degree of
freedom. To calculate accurately the effect of larger loop
inductances, that is when the inductive energy arising from
the persistent current in the qubit is comparable to the Jo-
sephson energy, one must consider the full three-dimensional
system.

In this paper, we present a theory for the three-junction
flux qubit in which we solve the full three-dimensional prob-
lem. In Sec. II, we derive expressions for the potential en-
ergy in terms of the macroscopic degrees of freedom; we
include the effects of loop inductance, junction asymmetry,
and stray capacitance. In Sec. III, we obtain the Hamiltonian
for the three-junction flux qubit, and in Sec. IV, we solve the
Hamiltonian in a rapidly convergent series expansion to find
the energy levels. Section V contains some concluding re-
marks.

II. THREE-DIMENSIONAL POTENTIAL

The three-junction flux qubit shown in Fig. 1 consists of
three Josephson junctions, one with a somewhat smaller
critical current than the other two, embedded in a supercon-
ducting loop. To determine the energetically favorable con-
figurations of the qubit, one considers the potential energy of
the system as a function of the macroscopic degrees of free-
dom. The potential energy has inductive and Josephson con-
tributions U=Ul+UJ. The inductive contribution is

Ul = LQJQ
2 /2, �1�

where JQ is the current circulating in the qubit. The Joseph-
son contribution, which provides the nonlinearity necessary
for a qubit, is

UJ = �0/�2���I01�1 − cos �1� + I02�1 − cos �2�

+ I03�1 − cos �3�� . �2�

Here the I0i are the critical currents of the three junctions and
the �i are the phase differences across them �i=1,2 ,3�. The
phase differences and the circulating current are connected
through the fluxoid condition
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�1 + �2 + �3 = �Q + 2�LQJQ/�0, �3�

where �Q=2��Q /�0 is the flux bias applied to the qubit in
units of phase. This constraint can be used to eliminate JQ
from Eq. �1� and express U in terms of only the �i.

In Fig. 2 we show three contours of constant potential
energy in the three-dimensional space spanned by the �i. We
see that far away from the plane defined by �1+�2+�3=�Q
the inductive energy dominates and the surfaces of constant
potential energy approach parallel planes �blue contours�.
When the inductive energy is small the periodic nature of UJ
becomes apparent, manifest in Fig. 2 as the closed red con-
tours which enclose multiple local minima.

To facilitate analysis of the potential, we introduce the
dimensionless parameters

�Q =
2�LQ

�0
� 1

I01
+

1

I02
+

1

I03
�−1

, �4�

which characterizes the relative importance of Josephson and
geometric inductances,

�Q = 2I03/�I01 + I02� , �5�
which describes the relative size of the small junction, and

�Q = �I01 − I02�/�I01 + I02� , �6�

which characterizes asymmetry between the two large junc-
tions.

The structure of the potential becomes clearer if we rotate
it into a coordinate system defined by a set of variables
aligned with the plane of zero inductive energy. We define
the total phase variable

�t = �Q��Q − �1 − �2 − �3�/�1 + 2�Q� , �7�

which runs normal to the plane of zero inductive energy. We
decompose the in-plane coordinates into a symmetric mode

�s =
1

2�1 + 2�Q�
�2�Q��3 − �Q� − �1 − �2� �8�

and an antisymmetric mode

FIG. 1. Schematic of three-junction flux qubit with loop induc-
tance LQ, reduced applied flux �Q, circulating current JQ, and phase
differences �i across Josephson junctions of critical current I0i.
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�a = ��1 − �2�/2. �9�

After subtracting off a constant, we find the Josephson en-
ergy

UJ = − EJ��1 + �Q�cos��a − �s − �t�

+ �1 − �Q�cos��a + �s + �t� + �Qcos�2�s + �Q − �t/�Q�� ,

�10�

where EJ= �I01+ I02��0 /4�. The inductive energy depends
only on �t and is given by

FIG. 2. �Color� Three-junction flux qubit potential. Three con-
tours of potential energy �U=1.4Ej �red�, U=10Ej �green�, and U
=30Ej �blue�� are shown. Parameters are �Q=0.8, �Q=0.4, �Q=0,
and �Q=�.

FIG. 3. �Color� Slice through �t=0 of three-junction flux qubit

potential. Parameters are �Q=0.8, �Q=0.01, �Q=0, and �Q=�.

174526
Ul = EJ

�1 + 2�Q�2�1 − �Q
2 �

2�Q�Q�1 + 2�Q − �Q
2 �

�t
2. �11�

Considering first the small �Q regime, we see that Ul
dominates, so that solutions of minimum potential energy
will have �t�0. We thus reduce the three-dimensional prob-
lem to a two-dimensional one. This is the regime which has
been studied in previous treatments of the three-junction flux
qubit.11 When the qubit is biased at �0 /2 ��Q=��, we see
the array of degenerate local minima shown in Fig. 3. Closer
inspection reveals that the minima come in pairs separated
by a barrier, the intracell barrier, such as those marked by the
points P0 and P1. A larger barrier separates neighboring pairs
of minima, the intercell barrier, as indicated along the arrow
from P0 to P2.

At �Q=�, the potential energies associated with the
minima P0, P1, and P2 are degenerate. This degeneracy is
principally lifted by the tunneling matrix element connecting
P0 and P1, resulting in a ground state that is a symmetric
superposition of states localized at P0 and P1, and an excited
state that is a corresponding antisymmetric super-
position. However, the much smaller tunneling matrix
element connecting P0 and P2 also serves to lift the degen-
eracy, giving states that are symmetric and antisymmetric
superpositions of states in adjacent double well potentials.
The combined result of these two tunneling elements

FIG. 4. �Color� Unit cell of a larger inductance flux qubit. Slices
are shown through both the �t-�s plane and the �a-�s plane, which
coincide along the dotted line. Parameters are �Q=0.6, �Q=0.4,
�Q=0, and �Q=�.

FIG. 5. Circulating current in potential minima for flux bias at
the degeneracy point. Magnitude of qubit circulating current JQ, as
determined by location of potential minimum, is shown as a func-
tion of �a� �Q and �b� �Q. Parameters are �=0, �Q=� and �Q
=0.7 �a�, and �Q=0.1 �b�.
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is four states: the ground state wave function is
a symmetric superposition localized at P0 and P1,with the
same phase in the double well containing P2; the first excited
state is symmetric at P0 and P1, but changes phase in the
double well containing P2, resulting in a nodal plane across
the segment connecting P0 and P2; the second excited state is
an antisymmetric combination of states at P0 and P1, but the
wave function with respect to P0 and P2 is symmetric; fi-
nally, the third excited state is antisymmetric with respect to
P0, P1, and P2, resulting in a nodal plane across each tunnel-
ing barrier.

When �Q is non-negligible, one must also look perpen-
dicularly to the �a-�s plane, in the �t direction, in order to
understand the nature of the two computational basis states.
Figure 4 shows two slices through the three-dimensional po-
tential space for a large-inductance flux qubit ��Q=0.4�. It is
clear that the minima do not lie exactly in the �a–�s plane,
but actually above and below it in �t. Recalling that �t is
proportional to the circulating current JQ, we see that P0 and
P1 correspond to circulating currents in opposite directions.
For the parameters listed in the caption to Fig. 4, the minima
lie at �t= ±0.2205; for comparison, a circulating current of
JQ= ± I03, the magnitude of the critical current of the small
junction, would correspond to �t= ±�Q�Q�1+2�Q−�Q

2 � / �1
+2�Q���Q

2 −1�= ±0.2400. The magnitude of the circulating
current, as a function of �Q is shown in Fig. 5�a�. We see that
estimating the magnitude of the circulating current to be
equal to the critical current of the small junction is appropri-
ate for low inductance flux qubits; however, the addition of
loop inductance reduces the magnitude of the circulating cur-
rent in this classical analysis.

In general, for �Q less than some critical value, the poten-
tial is a single well so that no persistent current can be sup-
a s t
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ported, rendering the device unsuitable as a qubit. For a qubit
with vanishing inductance ��Q→0�, this critical value is
�Q=1/2; however, as the inductance is increased, a smaller
value of �Q can support a persistent current. For example, for
�Q=0.1, the potential is bifurcated at �Q�0.41 �Fig. 5�b��.
For �Q	1 a double well potential still exists, but the barrier
to intercell tunneling is lower than the barrier to intracell
tunneling. This leads to quantum states of the system which
are not suitable for a conventional qubit.

III. DERIVATION OF THE HAMILTONIAN

To understand fully the dynamics and quantum states of
the three junction flux qubit, we must introduce the kinetic
energy and form the Hamiltonian. Kinetic energy in the sys-
tem arises from charges on the junction capacitance, and can
be written as

T = �0
2/�8�2� 
 ��C1 + Cs��̇1

2 + �C2 + Cs��̇2
2 + �C3 + Cs��̇3

2� .

�12�

Here, we have associated a capacitance Ci with each junc-
tion, which we take to be proportional to the critical current
and hence the area of the corresponding junction, and a stray
capacitance Cs, which is taken to be the same for all junc-
tions. Equation �12� is of the form CiVi

2 /2, where the voltage
developed across each junction is Vi= ��0 /2��d�i /dt.

When we apply the coordinate transformations �Eqs.
�7�–�9�� and parameter transformations �Eqs. �4�–�6�� defined
above, the kinetic energy takes the form
T =
�2

8Ec
��̇a �̇s �̇t� · 	1 + �Q − �Q − �Q

− �Q 1 + 2�Q + 3�Q �Q��Q − 1�/�Q

− �Q �Q��Q − 1�/�Q ��Q + 2�Q
2 + �Q + 2�Q

2 ��/2�Q
2 
 · 	�̇a

�̇s

�̇t

 , �13�
where we have introduced the charging energy Ec=e2 / �C1

+C2�, the stray capacitance ratio �Q=2Cs / �C1+C2�, and
used a matrix notation to represent all the terms. Note that
the mass tensor in Eq. �13� becomes diagonal in a qubit with
no stray capacitance and no asymmetry ��Q=�Q=0�.

We now form the Hamiltonian H using the standard tech-
niques of classical mechanics.15,16 First we form the La-
grangian L=T−U and then calculate the canonical momenta
p� = �p , p , p �. We can write this as the vector equation
p� =�L /��̇� , where �̇� = ��̇a , �̇s , �̇t�. The Hamiltonian becomes

H = p� · �̇� − L , �14�

which can be expressed as

H = p� · MI−1 · p� /2 + U , �15�

where the inverse mass matrix is
-4
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MI−1 = 4Ec/��2��1 + �Q�2 − �Q
2 ��


 	
1 + �Q

�Q

1 + 2�Q

2�Q�Q

1 + 2�Q

�Q

1 + 2�Q

��Q + �Q��1 + �Q� + 2�Q
2 �1 − �Q

2 + 2�Q + �Q
2 �

�1 + 2�Q�2��Q + �Q�
2�Q��Q + �Q

2 + �Q��Q
2 − �Q − �Q

2 ��
�1 + 2�Q�2��Q + �Q�

2�Q�Q

1 + 2�Q

2�Q��Q + �Q
2 + �Q��Q

2 − �Q − �Q
2 ��

�1 + 2�Q�2��Q + �Q�
2�Q

2 �2�Q�1 + �Q� + 1 + 4�Q + 3�Q
2 − �Q

2 �
�1 + 2�Q�2��Q + �Q�


 .

�16�
IV. SOLUTION TO THE HAMILTONIAN

To find the quantum mechanical solution to the system,
we expand the Hamiltonian operator in a complete set of
basis functions. The potential energy is 2� periodic in both
�a and �s, while the kinetic energy is quadratic for a qubit
without asymmetry or stray capacitance. This suggests that
expansion in plane waves is appropriate for these two com-
ponents.

However, while �t also has a quadratic kinetic energy and
terms in the potential energy which are periodic, the induc-
tive potential is quadratic in �t. This suggests that harmonic
oscillator wave functions are more appropriate for the expan-
sion in �t; however the periodic terms may present some
difficulty, as they require calculating overlap integrals be-
tween sinusoids and exponentially decaying polynomials.

Thus we choose for our basis functions the product state



 klm� = 

 k
a�

 l

s�

 m
t � , �17�

where the first two factors are plane waves



 k
a� = �2��−1/2e−ik�a; �18�



 l
s� = �2��−1/2e−il�s. �19�

The third factor is a simple harmonic oscillator wave func-
tion in �
t
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 m
t � = � mt�t

22m� � �m! �2�1/4

Hm��mt�t

�
�t�e−mt�t�t

2/2�,

�20�

where Hm��� is the mth degree Hermite polynomial. The
effective mass for the harmonic oscillator is

mt =
�2��Q + �Q���1 + �Q�2 − �Q

2 ��1 + 2�Q�2

8Ec�Q
2 ��1 + �Q��1 + 2�Q + 3�Q� − �Q

2 �
�21�

and the natural frequency is

�t = �2Ec/ � �


�2EJ�Q�1 − �Q
2 ���1 + �Q��1 + 2�Q + 3�Q� − �Q

2 �
Ec�Q�1 + 2�Q − �Q

2 ���Q + �Q���1 + �Q�2 − �Q
2 �

.

�22�

We need to calculate the matrix elements

HIklmk�l�m� = �
klm
H

k�l�m�� . �23�

To do this we first Fourier transform the potential energy
with respect to �a and �s and write it as

U = EJ �
k=−2

2

�
l=−1

1

UIkle
−i�k�a+l�s� +

1

2
mt�t

2�t
2, �24�

I i�t
where U is a function of e and �Q
UIkl =
1

2	 0 �1 − �Q�ei�t 0 ��Q − 1�e−i�t 0

�Qei��Q−
�t

�Q
� 0 0 0 �Qe−i��Q−

�t

�Q
�

0 ��Q − 1�e−i�t 0 �1 − �Q�ei�t 0

 . �25�

Note that the UI00 component is in the middle of the matrix.
We can now write down the Hamiltonian expansion and address the terms individually
-5
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HIklmk�l�m� = �
i=�a,s�
j=�a,s�

1

2
�
 k

a
�
 l
s
piMIi,j

−1pj

 l�
s �

 k�

a � + �MIat
−1�
 k

a
pa

k�
a � + MIas

−1�
 l
s
ps

 l�

s ���
 m
t 
pt

 m�

t �

+ EJ �
p=−2

2

�
q=−1

1

�
 m
t 
UIpq

 m�

t ��
k
a
�
l

s
e−i�p�a+q�s�

 l�
s �

 k�

a � + �
 m
t 


pt
2

2mt
+

1

2
mt�t

2�t
2

 m�

t � . �26�
The first term is readily evaluated by replacing the momen-
tum operators pi with −i� �� /��i� and performing the inte-
grals

�
i=�a,s�
j=�a,s�

�
−�

� �
−�

� − �2MIij
−1

8�2 ei�k�a+l�s�


 ��/��i���/�� j�e−i�k��a+l��s�d�ad�s

= �2�k2MIaa
−1/2 + klMIas

−1 + l2MIss
−1/2��kk��ll�, �27�

where we have introduced the Kronecker delta function �ab.
For the second term of Eq. �26�, the first factor involving

pa and ps is straightforward to calculate using the same tech-
nique as the first term. The second factor, involving pt, is
evaluated by representing the momentum operator with har-
monic oscillator annihilation and creation operators, pt

= i�mt�t� /2�at
†−at�

�MIat
−1�
 k

a
pa

 k�
a � + MIas

−1�
 l
s
ps

l�

s ��


 i�mt�t�

2
��
 m

t 
at
†

 m�

t � − �
 m
t 
at

 m�

t ��

= − i�mt�t�
3

2
�MIat

−1k�kk� + MIas
−1l�ll��


 ��m + 1�m�,m+1 − �m�m�+1,m� . �28�

Evaluating the third set of terms of Eq. �26� involves cal-
culating two factors. The second factor is simply another
plane wave overlap integral, giving

�
 k
a
�
 l

s
e−i�p�a+q�s�

 l�
s �

 k�

a � = �k,p+k��l,q+l�. �29�

The first factor involves overlap integrals between harmonic
oscillator wave functions and exponentials. The formula re-
quired to evaluate this factor is17

�
 m
t 
ek�t

 m�

t � = �m ! m�! �−1/2e
�k2

4mt�t �
j=0

min�m,m��

j! �m

j
��m�

j
�


� �k2

2mt�t
��m+m�−2j�/2

. �30�

The final term of Eq. �26� is easy to understand. It is
simply the overlap of a harmonic oscillator Hamiltonian with

harmonic oscillator basis functions, giving

174526
�
 m
t 


pt
2

2mt
+

1

2
mt�t

2�t
2

 m�

t � = �m +
1

2
� � �t�mm�. �31�

Thus, all the matrix elements in HIklmk�l�m� can be written
down in closed form. The matrix is infinite dimensional in
this basis, but we can truncate it for numerical diagonaliza-
tion by letting k and k� run from −nk to nk, l and l� run from
−nl to nl, and m and m� run from 0 to nm. The eigenvalues of

HI then give the energy levels and the eigenvectors give the
coefficients of the wave functions. Experience has shown
that �nk ,nl ,nm�= �5,10,2� gives good results for small induc-
tance flux qubits, say �Q�0.1, since the addition of more
basis functions affects both the intracell and intercell split-
tings by less than 1%. For larger values of �Q, nm must be
increased to capture the effect of the inductance.

In Fig. 6�a� we show the result of such a numerical cal-
culation, with the flux bias running over its period of �0. We
see that when the flux bias is near an integer the energy
levels disperse parabolically, as Ul increases quadratically.
Where energy levels cross, tunneling matrix elements lift the
degeneracy, resulting in gaps. Near a flux bias of �0 /2 a
double well potential forms, resulting in inverted dispersion
curves. At �Q=�0 /2 the wave functions consist of symmet-
ric and antisymmetric combinations of localized states at P0
and P1 �Fig. 3�. These two states can be further symmetrized
or antisymmetrized by the tunneling element connecting P0
to P2, resulting in a fine splitting for each energy level. Due
to this intercell tunnel coupling, all of the energy levels are
actually doublets with splittings at the degeneracy point be-
tween 100 kHz and 1 MHz, too small to be resolved on the
scale of Fig. 6�a� and smaller than the presently achieved
spectroscopic linewidths in flux qubit measurements.5–7 Thus
the level splitting which is measured at �Q /�0=0.5, � or the
intracell splitting, is actually the energy difference between
the ground state and the second excited state; transitions be-
tween the ground and first excited states, and between the
second and third excited state, give the energy of intercell
splittings. At �Q /�0=0.5, although the ground and first ex-
cited states are separated by the intercell tunnel splitting,
these states are macroscopically indistinguishable. As �Q is
moved away from �0 /2, this intercell splitting decreases
rapidly �Fig. 6�b�� as the tunneling probability between
neighboring cells vanishes and the intracell dynamics domi-
nates.

Figure 7 shows a series of numerical calculations of the
qubit energy levels for different values of �Q. As �Q in-
creases the spacing between the ground and second excited

state decreases, while the higher excited states are elevated to
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larger energies. The states of opposite circulating current can
be identified by the way they disperse hyperbolically in op-
posite directions. The difference in energy between these
states fits quite well to the hyperbolic form �E=��2+�2,

FIG. 6. �a� Calculated energy levels of the three-junction flux
qubit as a function of �Q for �Q=0.15, �Q=0.63, �Q=0, �Q=0,
EJ /h=50 GHz, Ec /h=1 GHz, nk=5, nl=10, and nm=2. Each vis-
ible line is actually a doublet split by the intercell tunneling. �b�
Flux dependence of the intercell splitting between the ground and
first excited states �solid� and second and third excited states
�dashed� for the same device parameters.
174526
where � is proportional to �Q−�0 /2; the root-mean-square
�rms� deviation is less than 20 MHz, indicating that a three-
junction flux qubit truncated to these two states is well ap-
proximated as an ideal two state system.

Using the numerical techniques described above, we stud-
ied the variation of the intracell splitting � for typical three-
junction flux qubit parameters as LQ is varied. Figure 8 con-
tains a plot of � versus �Q. For small �Q, LQ has a negligible
effect on �. However, as �Q approaches 1, which corre-
sponds to a loop inductance LQ=11.8 nH for the parameters
in Fig. 8, � drops by more than an order of magnitude,
rendering the device no longer useful as a qubit. However,
keeping �Q below �0.2 corresponds to a substantial value of
� �	1 GHz�, while allowing for a loop inductance as large
as 2 nH, sufficient for most proposed scalable biasing6 and
qubit coupling schemes.10 Figure 8 also shows the effect of
the intercell splittings at �Q=�0 /2. Note that the intercell
splitting in the small-�Q limit is approximately 104 times
smaller than the intracell splitting, consistent with a previous
calculation for a small-�Q qubit.11 The intercell splittings
remain approximately constant as �Q is increased, until they
begin to drop precipitously with the intracell splitting around
�Q=0.3.

We investigated the effect of asymmetry between the two
large qubit junctions by calculating the energy levels for dif-
ferent �Q �Fig. 9�. As �Q is increased, � decreases, although
the essential nature of the qubit is preserved. This behavior is
summarized in Fig. 10 where we plot � versus �Q. For the
parameters used in this plot, there is a cusp at �Q=0.37 cor-

FIG. 7. Calculated energy lev-
els of the three-junction flux qubit
for six different values of �Q:
�0.01,0.1,0.3,0.7,1 ,10�. Each
plot shows energy as a function of
�Q for �Q=0.63, �Q=0, �Q=0,
EJ /h=50 GHz, Ec /h=1 GHz, nk

=5, nl=10, and nm=2. Each vis-
ible line is actually a doublet split
by the intercell tunneling.

FIG. 8. Calculated tunnel splittings as a function of �Q for
three-junction flux qubit. Parameters are �Q=0.63, �Q=0, �Q=0,
EJ /h=50 GHz, EC /h=1 GHz, �Q=�0 /2, nk=5, nl=10, and nm

=6. Solid curve, associated with left axis, corresponds to intracell
tunneling frequency for transition between ground state and second
excited state �. Right axis shows intercell tunneling frequency for
transition between ground and first excited state �dotted curve�, and
between second and third excited states �dashed curve�.
-7
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responding to the point �Q+�Q=1, where I02= I03. Thus, at
this cusp, the smaller of the two strong junctions, with criti-
cal current I02, and the weak junction, with critical current
I03, swap roles. Also shown are the intercell splittings at
�Q=�0 /2, which increase with �Q and are maximal at the
cusp where the intercell tunneling barrier is lowest. Based on
the plot in Fig. 10, if one maintains �Q below �0.1, � will
be minimally affected and the intercell splittings will remain
small. A value of �Q=0.1 corresponds to a 22% asymmetry
in the critical currents of junctions 1 and 2, well within the
capabilities of conventional nanofabrication techniques.

As a practical matter, the effect of stray capacitance, as
captured by the parameter �Q, may be important for a quan-
titative understanding of the three-junction flux qubit. Since
a submicron junction has a capacitance of only a few femto-
farads, the contributions from stray capacitance may be non-
negligible. The main effect of such stray capacitance is to
reduce the spacing between energy levels, just as a corre-
sponding decrease in Ec would. A secondary effect is that the
effective ratio of the capacitances between the small and
large junctions increases as �Q increases, resulting in behav-
ior similar to an increase in �Q.

V. CONCLUDING REMARKS

Flux qubits with non-negligible loop inductance are desir-
able for coupling to on-chip flux bias lines to build scalable

FIG. 10. Calculated tunnel splitting � as a function of �Q for
three-junction flux qubit. Parameters are �Q=0.63, �Q=0.15, �Q

=0, EJ /h=50 GHz, EC /h=1 GHz, �Q=�0 /2, nk=5, nl=10, and
nm=2. Solid curve, associated with left axis, corresponds to intrac-
ell tunneling frequency for transition between ground state and sec-
ond excited state. Right axis shows intercell tunneling frequency for
transition between ground and first excited state �dotted curve�, and
between second and third excited states �dashed curve�. Note the
cusp occurs at �Q+�Q=1, demonstrating the interplay between

these parameters.
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architectures and for providing the interactions between qu-
bits necessary for generating entanglement. Thus, it is crucial
to understand the effects of the loop inductance on the be-
havior of flux qubits. Furthermore, the effects of asymmetry
due to realistic variations in junction fabrication must be
accounted for to make predictions of the qubit energy levels
for a given chip design. To advance these goals, we have
studied the energy levels of the three-junction flux qubit in
the full three-dimensional treatment. In the limit of vanishing
�Q, the qubit dynamics can be well approximated by a two-
dimensional model in the plane of zero-inductive energy.
However, for larger �Q, when the loop inductance is no
longer negligible compared to the Josephson inductance, the
minima of the potential energy move away from the zero-
inductive energy plane; one must account for this shift in
determining the tunnel coupling between the wells. To cap-
ture these inductive effects, we constructed three-
dimensional wave functions consisting of plane waves and
harmonic oscillator modes, and solved numerically for the
eigenvalues of the qubit Hamiltonian.

We computed the resulting energy levels as the qubit pa-
rameters were varied. For a flux bias �Q near 0.5�0, the
dispersion of the ground and second excited states—after the
doublet splitting due to intercell tunneling has been taken
into account—exhibited the expected hyperbolic depen-
dence. As we increased �Q this hyperbolic dispersion per-
sisted, but the gap � between the ground and second excited
states at �Q=0.5�0 decreased substantially and the higher
energy levels became distorted and were elevated to larger
energies. As �Q approached unity, � decreased by more than
an order of magnitude.

We also investigated the effect of junction asymmetries on
the qubit energy levels. As the asymmetry �Q between the
two large junctions was increased, the dispersion of the
ground and second excited states continued to follow the
hyperbolic form, but � was suppressed somewhat while the
intercell tunnel splittings were enhanced.

We conclude that the three-junction flux qubit is a versa-
tile device that can accommodate substantial amounts of
loop inductance, enabling scalable biasing schemes and in-
terqubit couplings, and moderate asymmetry between the
junctions, as is typical of current fabrication processes. How-
ever, to predict the resulting energy levels, one must consider
the full three-dimensional problem. Furthermore, the induc-
tance and asymmetry should not be increased to arbitrarily
large values, as � would be suppressed substantially, render-
ing the device no longer useful as a qubit.

FIG. 9. Calculated energy lev-
els of the three-junction flux qubit
for five different values of �Q

ranging from 0 to 0.5. Each plot
shows energy as a function of �Q

for �Q=0.63, �Q=0.15, �Q=0,
EJ /h=50 GHz, Ec /h=1 GHz, nk

=5, nl=10, and nm=2.
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