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We present a measurement protocol for a flux qubit coupled to a dc-superconducting quantum interference
device !SQUID", representative of any two-state system with a controllable coupling to a harmonic-oscillator
quadrature, which consists of two steps. First, the qubit state is imprinted onto the SQUID via a very short and
strong interaction. We show that at the end of this step the qubit dephases completely, although the perturbation
of the measured qubit observable during this step is weak. In the second step, information about the qubit is
extracted by measuring the SQUID. This step can have arbitrarily long duration, since it no longer induces
qubit errors.
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I. INTRODUCTION

The quantum measurement postulate is often viewed as
the most intriguing assumption of quantum physics. Much of
it has been demystified by the study of the physics of quan-
tum measurements. The dynamics of the measurement pro-
cess can be described by a coupled many-body Hamiltonian,
consisting of the system to be measured and the detector
with a heat bath component.1,2 Thus, the measurement pro-
cess can be investigated using the established tools of quan-
tum mechanics of open systems.3–6

Most interest has been focused on the physics of weak
measurements, where the system-observer coupling can be
treated within perturbation theory. Famously, this research
has shown that only a certain class of measurements satisfy
von Neumann’s quantum measurement postulate7,8 and in-
deed project the system wave function onto an eigenstate of
the measured observable. Measurements of this type are
termed quantum nondemolition !QND" measurements.
Within the weak measurement paradigm, the QND regime is
achieved when the measured observable is a constant of the
free motion and commutes with the system-detector coupling
Hamiltonian. Weak QND measurements have been investi-
gated in various systems, ranging from spins to oscillators
and even photons.9–17

The dynamics of the weak measurement process has prac-
tical relevance in the context of quantum computing. Specifi-
cally, superconducting qubits have been proposed as building
blocks of a scalable quantum computer,18–21 and a fast mea-
surement with a high resolution and visibility is important
for readout and also for error correction.

There are a variety of different measurement techniques
used in superconducting qubits. Weak measurements can be
performed using single-electron transistors.18 A different ap-
proach is the switching measurement, where the detector
switches out of a metastable state depending on the state of
the qubit.22–26 Such switching measurements have been a
quite successful readout scheme for many superconducting
qubit experiments to date. However, the dissipative nature of

the switching process imposes limitations on the measure-
ment speed and perturbs the qubit state.

A QND measurement could be achieved by using a
pointer system and measuring one of its observables influ-
enced by the state of the qubit.27 Recent developments of
such detection schemes, using an oscillator as the pointer,
have led to vast improvements28–34 over previous measure-
ment protocols.

It has previously been shown35–38 that infinitesimally
short interaction between a qubit and an oscillator is suffi-
cient to imprint information about the state of the oscillator
onto the qubit. The similar idea of using a short interaction to
transfer information about the qubit into the oscillator has
been used39 in a dispersive readout scheme. In this case, after
a short interaction, the state of the oscillator contains infor-
mation about the qubit which can be extracted by further
measuring one of its observables, for example, momentum.
However, this scheme did not take possible bit flip errors into
account. These errors may occur in the short yet finite time
when the qubit is in contact with its environment. Thus, the
full power of a quasi-instantaneous measurement has not yet
been explored.

In this paper we describe the effect of an ideally ex-
tremely short and arbitrarily strong interaction of a qubit
with its environment !consisting of a weakly damped har-
monic oscillator". We investigate the back action on the qubit
when the measured observable does not commute with the
Hamiltonian describing the interaction with the environment
and study how close this result approximates the QND mea-
surement.

We study a setup consisting of a flux qubit inductively
coupled to a dc-superconducting quantum interference de-
vice !SQUID" magnetometer. The flux qubit consists of a
superconducting loop with three Josephson junctions.40,41

For flux bias near odd half-integer multiple of h /2e, the qu-
bit is represented by two circulating current states with op-
posite directions. During the entire measurement process the
SQUID is coupled to measurement circuitry, with associated
dissipative elements. However, it never switches out of the
zero dc-voltage state. The qubit-SQUID interaction of arbi-
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trary strength is turned on only for a short time by applying
a very short bias current pulse to the latter. During this time,
information about the qubit is imprinted onto the SQUID and
can later be extracted from it during the post-interaction
phase by monitoring voltage oscillations across the device.
When the current pulse is switched off, the qubit-SQUID
interaction ideally vanishes and the environment no longer
perturbs the qubit. Thus, one can afford a long time to mea-
sure the SQUID and determine the state of the qubit.

In Sec. II, following Ref. 42, we model the qubit-SQUID
system by a two-level system linearly coupled to a dissipa-
tive oscillator. We describe the evolution of this system by
means of a master equation in the Born-Markov
approximation,43 valid for the underdamped SQUID. In Sec.
III we discuss the qubit-oscillator evolution during both in-
teraction and post-interaction phases. We study the qubit
dephasing and relaxation during the interaction phase. We
show that, at the end of this phase, the qubit appears com-
pletely dephased. In other words, the qubit has been mea-
sured and its information has been transferred in the form of
a classical probability to the oscillator. During the same time
interval, we find that qubit relaxation has remained negli-
gible. For the post-interaction phase we describe the evolu-
tion of the oscillator under the influence of the environment,
starting from the state prepared by the interaction with the
qubit. Technically, extracting the qubit information amounts
to measuring the amplitude of the ringdown of the oscillator
momentum. In Sec. IV we discuss some of the details in-
volved with implementing this measurement scheme.

II. MODEL AND METHOD

We study a flux qubit inductively coupled to a dc-SQUID,
with one possible setup shown schematically in Fig. 1!a". We
describe a more detailed setup for implementing this scheme
in Sec. IV.

The SQUID is characterized by a two-dimensional wash-
board potential for the two independent phases correspond-

ing to the two junctions.44 Their sum couples to bias current
driven through the SQUID, while the difference of phases
couples to the magnetic flux applied to the SQUID. The
small oscillations in these two directions can have vastly
different characteristic frequencies. In particular, a small
geometric inductance and a low critical current can make the
flux mode frequency large, while a shunt capacitor can lower
the bias current mode frequency substantially. In the limit of
very different frequencies, one can approximate the SQUID
dynamics as that of a one-dimensional oscillator in the bias
current direction, with the position of the oscillator minimum
dependent on both IB and the total flux coupled to the
SQUID which, for example, could vary depending on the
state of the qubit.

The setup of Fig. 1!a" can be described by the effective
Hamiltonian,42

Ĥ = ĤS + ĤI + ĤB,

ĤS = !w"̂z + !#"̂x + !$!â†â + 1/2"

+ !#%!t" − %!t − &"$!â + â†"!"̂z' + K" , !1"

where ĤS is the Hamiltonian for the qubit-SQUID oscillator
system, w is the qubit energy, # is the tunneling matrix ele-
ment, ĤB is the Hamiltonian for the dissipative environment
of the measurement circuitry, ĤI describes the interaction
between the SQUID oscillator and the environment, and % is
the Heaviside step function. We note that for a continuous
shape of the current pulse similar results are expected, as
long as the switching is not adiabatic.

Here the SQUID is described, in the lowest-order ap-
proximation, by a harmonic oscillator with frequency $, i.e.,
the plasma frequency of the bias current degree of freedom.
This frequency also depends on the applied bias current, as
shown in Appendix B. This dependence leads to an enhanced
ring-down frequency after the pulse is switched off. This
change in the SQUID plasma frequency does not, in the first
approximation, depend on the qubit state; therefore it will
not qualitatively affect this method of discrimination. For the
following derivation we assume the SQUID plasma fre-
quency constant !the value during the bias pulse", noting that
the ring-down oscillations occurring in the post-interaction
phase have in practice a somewhat higher frequency but oth-
erwise unchanged behavior.

The dispersive, next-to-leading-order component of the
qubit-oscillator coupling39 becomes significant in the ab-
sence of a linear component for very weak bias pulse, which
is not the limit we investigate here. In the following, the
effects of the linear component are investigated. We focus on
the regime where the qubit-SQUID interaction displaces the
state by more than its zero-point fluctuation but does not yet
explore the classical nonlinearity. The first consequence of
the nonlinear component may be to add more phase shift to
the ring-down oscillations. In the measurement protocol pro-
posed here we assume a symmetric SQUID.

The qubit-oscillator coupling strength is tuned by the bias
current IB.45 When IB=0, the qubit and the SQUID are de-
coupled. By using a fast current pulse, the qubit-oscillator

FIG. 1. !Color online" !a" Simplified circuit consisting of a flux
qubit inductively coupled to a SQUID with two identical junctions
and shunt capacitance CS. The SQUID is driven by a bias step-like
dc pulse IB!t" and the voltage drop V!t" is measured by a device
with internal resistance R. !b" Illustration of the measurement
scheme: coupling !t=0" and decoupling !t=&" of the qubit and the
SQUID !oscillator" and the evolution of a point of mass in the
transition of potential from one harmonic oscillator to a superposi-
tion of two displaced oscillators and back. The dashed !red" and the
continuous !green" lines correspond to the different states of the
qubit.
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interaction of arbitrary strength ' is turned on only for the
short time & allowing information about the qubit to be im-
printed onto the oscillator. During this time, the SQUID os-
cillator is displaced according to the qubit state. After the
coupling is switched off, the SQUID oscillator phase particle
returns to the original position after undergoing ring-down
oscillations that decay with a damping determined by the
SQUID measurement circuitry. The parameter K describes
the strength of the bias current kick induced in the oscillator,
caused by the abrupt shift in the minimum of the SQUID
potential energy from the bias current pulse, in the absence
of a qubit. For the expressions of the parameters ' and K and
their explicit dependence on IB see Appendix B.

During the entire measurement process the oscillator is
coupled via a linear Hamiltonian ĤI,

ĤI = %
i

!(i!âb̂i
† + â†b̂i"

&2m$
, !2"

to a dissipative environment described by a bath of harmonic
oscillators,

ĤB = %
i

!)i'b̂i
†b̂i +

1
2
( , !3"

with Ohmic spectral density J!)"=%i(i
2!#!)−)i"

=m!*)%!)−)c" /+.46 Here #*$=s−1 is the photon loss rate.
The cutoff frequency )c is physically motivated by the high-
frequency filter introduced by the capacitors. This environ-
ment represents the dissipative element contained in any
measuring device. We now describe the dynamics of the qu-
bit and SQUID oscillator during the various phases of our
measurement scheme.

A. Interaction phase

At t=0, before the bias current is rapidly pulsed on and
the qubit and SQUID interact strongly, we assume the fac-
torized initial state ,̂!0"= ,̂S!0" ! ,̂B!0". The oscillator inter-
action with the bath is supposed to be weak, and assuming a
Markovian environment, we obtain the standard master
equation for the qubit-oscillator reduced density matrix
,̂S!t"=TrB),̂!t"* in the Born approximation,

,̇̂S!t" =
1
i!

#ĤS, ,̂S!t"$

−
1
!2+

0

t

dt! TrB)ĤI,#ĤI!t,t!", ,̂S!t" ! ,̂B!0"$* , !4"

where

ĤI!t,t!" = Ût!
t ĤIÛt

t!, Ût
t! = T exp'+

t

t!
d&

ĤS + ĤB

i! ( , !5"

and T is the time-ordering operator. This approach is valid at
finite temperatures kBT-!* and times t-1 /)c,3,47 which is
the limit we will discuss henceforth.

In the qubit "̂z eigenbasis the density matrix and the
qubit-oscillator Hamiltonian read

,̂S = ',̂↑↑ ,̂↑↓

,̂↓↑ ,̂↓↓
( , !6"

ĤS↓↑ = ĤS↑↓ = !#, r" = ,"-"̂z-"., " ! )↑ ,↓* , !7"

ĤS"" = !#r"w + $!â†â + 1/2" + !r"' + K"!â + â†"$ . !8"

In the following, we assume that the environment acts on
each matrix element of Eq. !6" in the same way. This is a
valid assumption in the case of very weak damping and
# /w.1 for an Ohmic bath. Within this assumption we ob-
tain

,̇̂"" =
1
i!

#Ĥ"", ,̂""$ − i#r"!,̂↓↑ − ,̂↑↓" + L̂,̂"",

,̇̂↑↓ =
1
i!

!Ĥ↑↑,̂↑↓ − ,̂↑↓Ĥ↓↓" + i#!,̂↑↑ − ,̂↓↓" + L̂,̂↑↑,

,̇̂↓↑ =
1
i!

!Ĥ↓↓,̂↓↑ − ,̂↓↑Ĥ↑↑" − i#!,̂↑↑ − ,̂↓↓" + L̂,̂↓↑, !9"

where

L̂,̂""! = − *!â†â,̂""! + ,̂""!â
†â − 2â,̂""!â

†"

− 2*n!â†â,̂""! + ,̂""!ââ† − â,̂""!â
† − â†,̂""!â" .

!10"

At t=0 we assume a factorized initial state for the qubit-
oscillator reduced density matrix,

,̂S!0" = ,̂q!0" ! ,̂HO!0" , !11"

and use the Wigner representation of the oscillator density
matrix in phase space,48

,̂HO!0" =
1
+
+ d2/00!/"D̂!− /" , !12"

D̂!− /" = exp!− /â† + /"â" , !13"

where 00 is the Fourier transform of the Wigner function. We
assume the oscillator to be initially in a thermal state,

00!/" =
1

4+
exp'−

1

2
-/-2(, 1 = 1 + 2n!$" , !14"

where n!$" is the Bose function at bath temperature T.
The qubit is assumed to be initially in the pure state
-2.=q↑-↑ .+q↓ei3-↓ . such that

,̂q!0" = ' q↑
2 q↑q↓e−i3

q↑q↓ei3 q↓
2 ( . !15"

For the corresponding Wigner characteristic functions we
obtain the following coupled partial differential equations:

0̇"" = #i!r"' + K"!/ + /"" + i$!/!/ − /"!/"" + D$0""

− r"i#!0↓↑ − 0↑↓" ,
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0̇↑↓ = #2i'!!/" − !/" + i$!/!/ − /"!/"" − 2iw + iK!/ + /""

+ D$0↑↓ − i#!0↓↓ − 0↑↑" ,

0̇↓↑ = #− 2i'!!/" − !/" + i$!/!/ − /"!/"" + 2iw + iK!/ + /""

+ D$0↓↑ + i#!0↓↓ − 0↑↑" , !16"

where the differential operator D is given by

D = − *!/!/ + /"!/"" − 1*-/-2. !17"

To solve these equations, we approximate the inhomoge-
neous parts, in the limit of short time & and weak tunneling #,
by

0""!!t" / 0""!!0" + t0̇""!!0", ","! ! )↑ ,↓* . !18"

For details on the solution see Appendix A.

B. Post-interaction phase

The state prepared by the interaction with the qubit at
t=&, as the bias current pulse ends, is described by

,̂!&" = %
","!!)↑,↓*

-".,"!-,̂""!!&" ! ,̂B!0" . !19"

Since the system Hamiltonian no longer contains any qubit-
oscillator interaction, we can write the time evolution of this
density matrix as follows:

,̂!t" = %
","!!)↑,↓*

Ûq!t"-".,"!-Ûq
†!t" · ÛHO-B!t",̂""!!&"

! ,̂B!0"ÛHO-B
† !t" , !20"

where the evolution operators are given by

Ûq!t" = exp#− i!t − &"!#"̂x + w"̂z"$ , !21"

ÛHO-B = T exp'+
&

t

dt!
ĤB + ĤI + !$â†â

i! ( . !22"

In the reduced density matrix,

,̂S!t" = TrB ,̂!t"

= %
","!!)↑,↓*

Ûq!t"-".,"!-Ûq
†!t" · TrB)ÛHO-B!t",̂""!!&"

! ,̂B!0"ÛHO-B
† !t"* , !23"

we can treat the time evolution of the oscillator components
by means of a master equation in the Born-Markov approxi-
mation and, in a similar manner to Eq. !4", we obtain

,̇̂""!!t" = − i$#â†â, ,̂""!!t"$

−
1
!2+

0

4

dt! TrB)ĤI,#ĤI!t,t!", ,̂""!!t" ! ,̂B!0"$* .

!24"

Using the Wigner representation,

,̂""!!t" =
1
+
+ d2/0̃""!!/,t"D̂!− /" , !25"

we obtain the differential equation,

0̇̃""!!/,t" = #i$!/!/ − /"!/"" + D$0̃""!!/,t" , !26"

with the initial condition prepared at the end of the interac-
tion phase,

0̃""!!/,&" = 0""!!/,&" , !27"

and the analytic solution,

0̃""!!/,t" = 0̃""!!/e
−!t−&"!*−i$",&"exp'1

2
-/-2!e−2!t−&"* − 1"( .

!28"

The reduced density matrix in the post-interaction phase is
given by

,̂S!t" = %
s,s!!)↑,↓*

-s.,s!-
1
+
+ d2/0ss!!/,t"D̂!− /" , !29"

where

0ss!!/,t" = %
","!!)↑,↓*

,s-Ûq!t"-".,"!-Ûq
†!t"-s!.0̃""!!/,t" .

!30"

In the post-interaction phase, the qubit and the oscillator are
decoupled. The trace of the oscillator-bath part in Eq. !20" is
time independent, as one can see after a circular permutation
of the involved operators. One finds that the qubit time evo-
lution is given only by the unitary Ûq and thus is independent
of the oscillator. Physically, this means that in the post-
interaction phase no further information about the qubit can
be transferred to the oscillator-bath system, and thus the qu-
bit suffers no further decoherence.

III. RESULTS

In this section we analyze the qubit decoherence and the
evolution of its detector, the dissipative oscillator, during the
entire measurement process.

A. Qubit decoherence

During the interaction phase, t! !0,&", the qubit is in con-
tact with an environment represented by the dissipative os-
cillator and thus subject to decoherence. The qubit can be
prepared in a well-defined state by thermal relaxation or !if
the temperature is too high" by measurement postselection
and conditional rotation by microwave pulses.

We analyze the qubit relaxation described by

,"̂z.!t" = 4+#0↑↑!0,t" − 0↓↓!0,t"$ , !31"

and from Eq. !A5" we obtain the analytic result,
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,"̂z.!t" = !q↑
2 − q↓

2"!1 −2 t2#2" + 4q↑q↓t##tw cos!3" + sin!3"$ .

!32"

We observe that the above expression is identical with the
expansion up to the second order in time of ,"̂z.!t" when the
qubit evolves under the free Hamiltonian Ĥq only. Thus, the
evolution of ,"̂z.!t" in this short-time expansion is indistin-
guishable from the free evolution of the unperturbed qubit.
This can be understood as follows: the observable "̂z com-
mutes with the environment coupling but is not an integral of
the free motion, as required for a QND measurement.1 Thus,
the perturbation of the measured observable comes only
from the free evolution of the system. One can restrict this
perturbation by reducing the time & when it takes place. Fig-
ure 2!a" shows the evolution of ,"̂z.!t" for a set of parameters
closely related to a feasible experiment !see also Appendix
B". The initial state chosen for panel !a" was -↑ ..

Furthermore, we analyze the qubit coherence ,"̂x. which
is given by

,"̂x.!t" = 8+ Re 0↑↓!0,t" !33"

and can be evaluated from Eqs. !A13" and !A14", where
0↑↓

inh!0, t" can be integrated numerically. We observe that, if
the interaction time & is long enough to allow the oscillator a
full period evolution, one finds a revival in the qubit coher-
ence at the end of this period. As the oscillator returns to
!almost" its initial state, the information about the qubit is
“erased” from the oscillator, as the oscillator states corre-
sponding to -↑ . and -↓ . are no longer discernible. The height
of the coherence revival peaks at $t=2+n decays in time as
the information about the coupled qubit-oscillator system
flows !irreversibly in this case" into the environment.

The qubit dephasing for the same parameters of Appendix
B is shown in Fig. 2!b". The appropriate initial state for this

study is the equal superposition !1 /&2"!-↑ .+ -↓ .". We ob-
serve that the qubit appears completely dephased after the
strong interaction with the damped oscillator, such that only
a classical probability is imprinted onto the latter.

In Fig. 2!a" we observe that the relaxation from the ex-
cited qubit state is very weak during the interaction time, as
,"̂z. differs at most by 10−3 from the initial value of 1. This
combination of low coherence !b", indicating the fact that the
information about the qubit has been imprinted onto the os-
cillator, and very low relaxation !a" demonstrates that the
first step of the measurement protocol produces a good start-
ing point for the second one, the oscillator readout. The neg-
ligible relaxation brings the qubit close to QND dynamics.

We observe that the qubit coherence time is essentially
dominated by the coupling between the qubit and its com-
plex environment '−1 such that it is desirable to achieve
'&-1. The relaxation of the qubit has been described in the
first order in time, and essential to the almost-QND result is
that &#.1. We note that the implied condition '.# contra-
dicts none of our approximations and can also be realized in
experiment.

B. Detector dynamics

In this section we study the evolution of the damped os-
cillator, which represents the detector. To achieve the strong
qubit-oscillator coupling during the short interaction phase
required to imprint the qubit state onto the oscillator, one
needs a bias current pulse that approaches the critical current
for the SQUID. Nonetheless, it is important that the SQUID
does not switch out to the running state during the bias cur-
rent pulse. For the parameters given in Appendix B, we can
evaluate the SQUID escape rate49 from the zero-voltage state
during the bias current pulse in the regime of quantum as-
sisted thermal activation !kBT5!$",

6sw =
sinh' !$

2kBT
(

sin' !$

2kBT
(

$

2+
exp'− 7U

kBT
( , !34"

where 7U is the potential barrier. We obtain, for the worst
case, 6sw03.68107 s−1 such that the escape time is much
larger than the duration of the bias current pulse.

The output of the detector is the time dependent voltage
across the SQUID, which is proportional to the momentum
of the oscillator. The probability distribution of momentum is
given by

P!p,&,t" = 9,#!p̂ − p". = 2+ d/x %
"!)↑,↓*

0""!/x,t"exp' ip/x

9
( ,

!35"

9 =&m$!

2
, / = /x + i/y , !36"

where, in the post-interaction phase !t:&", 0""!/x , t" also
depends on & via its initial condition. The expectation values
for the nth moment of the oscillator momentum and position
are then

FIG. 2. !a" Evolution of ,"̂z. with qubit initially in -↑ . state. !b"
Dephasing from the 1 /&2!-↑ .+ -↓ ." state for the time & that the
qubit is in contact with the oscillator. For both plots, the following
parameters were used: $ / !2+"=0.97 GHz, * /$=10−2, w=$, $&
=1.83, #&=0.015, '&=3, and T=30 mK. The assumed values of
the circuit parameters are given in Appendix B.
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,p̂n.!t" =
4+9n

in
!− 1"n!!/x"n %

"!)↑,↓*
0""!/x,t"-/x=0,

,x̂n.!t" = '& !

2m$
(n4+

in !!/y"n %
"!)↑,↓*

0""!i/y,t"-/y=0.

!37"

Furthermore, in the post-interaction phase we have, from Eq.
!30",

%
"!)↑,↓*

0"" = %
s,s!,"!)↑,↓*

,"-Ûq!t"-s.,s!-Ûq
†!t"-".0̃ss!

= %
s,s!

,s!-Ûq
†!t"Ûq!t"-s.0̃ss!

= %
s

0̃ss, !38"

which shows, as expected, that no measurement of the oscil-
lator can provide information about the post-interaction evo-
lution of the qubit, provided this evolution is unitary !i.e., the
qubit is not being measured by something else".

For the evaluation of both Eqs. !35" and !37" the s inte-
gration in 0""

inh #Eq. !A7"$ should be evaluated last. Thus, one
obtains an analytic !but rather long" expression for the ex-
pectation value of momentum, while for the probability den-
sity a numerical s integration is required. Nevertheless, the
components originating in 0""

hom turn out to be dominant, and
we give their analytic expressions in the following:

,p̂.!&,t" = ,p̂.hom!&,t" + ,p̂.inh!&,t" ,

,p̂.hom = !K + 'q↑
2 − 'q↓

2"9e−!t−&"*

· 'e−!t−&"i$1 − e−&!*+i$"

− * − i$
+ e!t−&"i$1 − e−&!*−i$"

− * + i$ ( .

!39"

The explicit form of the probability distribution of momen-
tum #Eq. !35"$ is given by

P!p,&,t" = Phom!p,&,t" + Pinh!p,&,t" , !40"

where

Phom!p,&,t"

= %
"

-,"-2.-2

&2+1
exp1 ip

&219
− i

K + r"'

&21
e!&−t"*

· 'e−!t−&"i$1 − e−&!*+i$"

− * − i$
+ e!t−&"i$1 − e−&!*−i$"

− * + i$ (22

.

The results above refer to the post-interaction phase t:&.
For the interaction phase, t! !0,&", the probability distribu-
tion of momentum is given by P!p , t , t" in Eq. !40" and the
expectation value of momentum by ,p̂.!t , t" in Eq. !39", i.e.,
by replacing & by t.

The expectation value of momentum ,p̂.!& , t" in the post-
interaction phase contains information about the qubit initial
state. We observe that the momentum oscillations corre-

sponding to the two different initial qubit states -↑ . and -↓ .
for t:& are in phase. Disregarding the inhomogeneous con-
tributions, which are relatively small in the limit of small &#,
the envelope of the homogeneous part is given by

A!q↑,q↓" =
2e−!t−&"*!K + 'q↑

2 − 'q↓
2"9

&*2 + $2
·

&− 2e−*& cos!&$" + e−2*& + 1. !41"

Figure 3 illustrates the phase-space trajectories of the os-
cillator corresponding to the qubit being in either the -↑ . or
-↓ . state. During the interaction phase the system moves
away from the origin. After switching off the interaction, the
trajectories spiral back toward the origin, without crossing.
For K=0 the trajectories are symmetric with respect to the
origin, while K"0 introduces an asymmetry. We note that
the artificial situation K=0 includes only the bare oscillator
response for the different qubit states. This situation has been
introduced in order to more easily illustrate the difference
between the two oscillations.

Figure 4 shows the output of the detector for the two qubit
states -↓ . and -↑ .. The standard condition for the possibility
of single-shot readout, i.e., the maximal separation of the two
peaks corresponding to different qubit states in the probabil-
ity distribution #Eq. !35"$ should be larger than the peak
width, is given by

; 0
-A!1,0" − A!0,1"-

39&1
: 1, !42"

where envelope !41" has been evaluated at t=&. We note that
q↑ and q↓ are continuous variables with values between 0 and
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FIG. 3. !Color online" Phase space representation of the oscil-
lator trajectories #,x̂.!t" , ,p̂.!t" , t$ corresponding to the two qubit
states -↓ . !dashed, red" and -↑ . !continuous, green" for the param-
eters given in Appendix B an oscillator quality factor of 10, with !a"
K=0 and !b" K"0. Projections on the !x , p", !x , t", and !p , t" planes
are included. Both trajectories start at the origin and move away
from it under the influence of the interaction with the qubit. At the
point marked with ! the interaction is switched off, and the system
evolves freely spiraling around the origin. The trajectories circle
around each other without crossing.
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1 and the condition presented above takes into account the
extremal case of the difference between the states -↑ . and
-↓ .. The result is independent of K. For the parameters of
Fig. 4 we have ;02.5.

IV. PRACTICAL IMPLEMENTATION

A possible measurement protocol involves discriminating
the amplitudes of the ring-down oscillations corresponding
to different qubit states. As demonstrated by Eq. !41", the
amplitude difference is independent of K. This discrimina-
tion could be performed more accurately with an interfero-
metric technique, where ring-down oscillations from a sec-
ond reference SQUID oscillator that is not coupled to the
qubit are combined with those from the original SQUID os-
cillator. The reference SQUID is biased such that it under-
goes ring-down oscillations with the same phase and ampli-
tude as those of the measurement SQUID oscillator for one
of the two qubit states. In this case, the resultant signal after
the subtraction would be exactly zero for perfect cancellation
when the qubit state causes the two SQUID oscillators to
have identical ring-down signals. A residual ring-down oscil-
lation would be produced for the other qubit state. This

scheme requires that the two SQUIDs receive an identical
kick and begin their ring-down oscillations at the same time.
This can be achieved by splitting the bias current pulse sig-
nal along two separate lines, one going to each SQUID, as
shown in Fig. 5, where the layout is such that the reference
SQUID has a vanishing coupling to the qubit.

Figure 6 shows the total signal, i.e., the difference of the
ring-down oscillations from the measurement and reference
SQUIDs for the two qubit states. We have considered the
case where the total flux bias for the reference SQUID is
equal to the total flux bias for the measurement SQUID in
the case where the qubit state is -↑ .. In this case the differ-
ence signal is smeared around 0 for the qubit in state -↑ .. If
the qubit is in the -↓ . state, the output signal oscillates with
an amplitude is given by the difference between the two
ring-down oscillations in Fig. 4.

The subtraction of the two ring-down signals can be
achieved by using a microstrip SQUID amplifier arranged as
a gradiometer with two separate microstrip inputs with their
senses indicated in Fig. 5.50 The microstrip SQUID amplifier
consists of a dc-SQUID with a multiturn superconducting
input coil above a conventional SQUID washer, where the
signal is connected between one side of the input coil and
ground and the other end of the input coil is left open. Input
signals near the stripline resonance frequency, related to the
total length of the input coil, typically of the order of 1 GHz,
couple strongly to the SQUID loop and the SQUID produces
an output signal with a gain of 310–20 dB.51 A gradiometer
microstrip SQUID amplifier for amplifying the difference
between two separate signals near the stripline resonance can
be produced as a straightforward extension from previous
microstrip SQUID layouts by using a SQUID geometry with
two loops and a separate stripline coil coupled to each of the
loops, with one signal input connected to each stripline.50

With no cross-talk between the two inputs, the circulating
currents in the two loops of the SQUID amplifier cancel out
when the input signals are identical, resulting in a vanishing
output signal. Thus, with the arrangement in Fig. 5, the mi-

FIG. 4. !Color online" Probability distribution of output voltage
!density plot: dark color indicates high and white low density" and
expectation value of momentum for the two qubit states -↓ .
!dashed, red" and -↑ . !continuous, green". Here $ / !2+"
=0.97 GHz, $ /*=20, w=$, $&=1.83, #&=0.015, '&=3, and T
=30 mK. The assumed values of the circuit parameters are given in
Appendix B.

FIG. 5. Circuit diagram for SQUID oscillator and qubit, along
with reference SQUID oscillator, dual-input gradiometer microstrip
amplifier, and a cryogenic high electron mobility transistor
!HEMT". Dashed boxes indicate different chips and/or different
temperatures.

FIG. 6. !Color online" Probability distribution of output voltage
!density plot: dark color indicates high and white low density" and
expectation value of momentum for the two qubit states -↓ .
!dashed, red" and -↑ . !continuous, green". Here the contribution of
the reference SQUID has been introduced. Parameters: $ / !2+"
=0.97 GHz, $ /*=20, w=$, $&=1.83, #&=0.015, '&=3, and T
=30 mK. The assumed values of the circuit parameters are given in
Appendix B.
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crostrip SQUID amplifier produces the difference between
the two oscillator ringdowns. Of course, in any practical gra-
diometer, there will be nonzero cross-talk, where a signal at
one input induces circulating currents in the other loop of the
SQUID amplifier. However, for reasonable layouts of the
device, this cross-talk could be kept at the 1% level, thus
setting a limit on the fidelity of the subtraction.50

Based on the calculated difference signals for the ring-
down oscillations in the two qubit states from Fig. 6, one
must be able to discriminate the oscillations for the -↓ . qubit
state from the nonoscillatory signal for the -↑ . state. Thus
one needs to resolve an 31 GHz signal with an amplitude of
30.5 9V in an 3100 MHz bandwidth, i.e., before the ring-
down is completed. Microstrip SQUID amplifiers operated at
20 mK have achieved noise temperatures as low as
350 mK.52 If we assume a conservative noise temperature
estimate of 200 mK for our gradiometer microstrip SQUID
amplifier, this would correspond to a noise of 250 nV in the
100 MHz bandwidth referred back to the SQUID oscillators.
Thus, it should be possible to discriminate between the two
possible output signals corresponding to the two qubit states
in a single shot.

In the nonideal case, the noise of the reference SQUID
increases the broadening of the curves in Fig. 6 such that the
single-shot condition #Eq. !42"$ must accommodate another
width 1. Still, at the parameters used in Fig. 6, this condition
will still hold.

V. CONCLUSION

We have demonstrated that a non-QND Hamiltonian can
induce a close to QND back action on the qubit, despite
arbitrarily strong interaction with the environment, provided
that the interaction time is very short, i.e., the measurement
is quasi-instantaneous. The relaxation of the qubit has been
described in the first order in time and, essential to the
almost-QND results presented above, is that &#.1.

We observe that the measurement time, i.e., the time
needed to reduce the qubit density matrix to a classical mix-
ture, is essentially dominated by the coupling between the
qubit and its complex environment '−1 such that it is desir-
able to achieve '&-1. The readout time for the oscillator is
restricted only by the ringdown of the two possible oscilla-
tions of momentum, i.e., *−1. The amplitude of these oscil-
lations is proportional to ', which again stresses the useful-
ness of a strong qubit-oscillator coupling. If the two peaks in
P!p ,& , t" become separated by significantly more than their
widths, single-shot measurement may become possible.

The method presented above has the advantage of a very
short interaction between the qubit and its environment,
compared to, e.g., the dispersive readout of Ref. 28, and
results in a QND type of readout, without the requirement of
strong, continuous ac driving of, e.g., Ref. 29 which may
induce spurious qubit relaxation.

As a figure of merit we consider the QND fidelity in Ref.
53. For the parameters used in Fig. 2 and an initial qubit state
2=1 /&2!-↑ .+ -↓ .", our scheme achieves at the end of the
post-interaction phase a QND fidelity of 99.92%. Further-
more, if the aim is to apply the idea of a short interaction

with an intermediate system, dispersive measurement, with
all its potential advantages, may be difficult due to the con-
tinuous driving which implies continuous interaction be-
tween the qubit and its environment.
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APPENDIX A: SOLUTION FOR THE WIGNER
CHARACTERISTIC FUNCTIONS

In this section we solve Eqs. !16" using approximation
!18".

1. Diagonal density-matrix elements

We solve the diagonal equations needed for evaluation of
expectation values such as ,p̂.!t", which characterize the out-
put of the detector,

0̇"" = #i!r"' + K"!/ + /"" + i$!/!/ − /"!/"" + D$0""

− r"i#00!/"F!/,t" , !A1"

where

F!/,t" = 2q↑q↓ sin!3"#i − K!/ + /""t$ − 2i!q↑
2 − q↓

2"#t

− 2iq↑q↓ cos!3"t#1'!/" − /" − 2w$ . !A2"

We perform a variable transformation in order to remove the
first-order derivatives in Eq. !A1",

/ = zes!*−i$", /" = z"es!*+i$", t = s , !A3"

and obtain

!s0"" = #i!r"' + K"es*!ze−si$ + z"esi$" − 1*-z-2e2s*$0""

− r"i#00!zes!*−i$""F!zes!*−i$",s" , !A4"

which can be solved analytically and transformed back to the
initial variables / , t. The solution reads

0""!/,t" =
-,"-2.-2

4+
0""

hom!/,t" −
ir"#

4+
0""

inh!/,t" , !A5"

where

0""
hom!/,t" = exp4−

-/-21

2
+ i!r"' + K" · 1/#1 − e−t!*−i$"$

* − i$

+
/"#1 − e−t!*+i$"$

* + i$ 25 !A6"

and

0""
inh!/,t" = +

0

t

ds0""
hom!/,s"F!/e−s!*−i$",t − s" . !A7"
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2. Off-diagonal density-matrix elements

The method and approximations of the previous section
can be used to solve the off-diagonal equations. From this
solution we intend to extract information about the qubit
coherence ,"̂x.!t". We start with

0̇↑↓ = #2i'!!/" − !/" + i$!/!/ − /"!/"" − 2iw + iK!/ + /""

+ D$0"" − i#00!/"G!/,t" , !A8"

where

G!/,t" = q↓
2 − q↑

2 − ti#' − K!q↓
2 − q↑

2"$!/ + /""

− 4t#q↑q↓ sin!3" . !A9"

The variable transformation in this case originates from

!s/ = !− i$ + *"/ + 2i' ,

!s/
" = !i$ + *"/" − 2i'

and reads

/ =
2i'

* − i$
!es!*−i$" − 1" + zes!*−i$",

/" = −
2i'

* − i$
!es!*+i$" − 1" + z"es!*+i$",

t = s . !A10"

We obtain

!s0↑↓ = )− 2iw − 1*/!z,s"/"!z",s" + iK#/!z,s"

+ /"!z",s""*0↑↓ − i#00!/!z,s""G!/!z,s",s" ,

!A11"

which can be solved analytically and transformed back to
/ , t. The solution reads

0↑↓!/,t" =
q↑q↓e−i3

4+
0↑↓

hom!/,t" −
i#
4+

0↑↓
inh!/,t" , !A12"

where

0↑↓
hom!/,t" = exp4−

-/-2

2
1 − 2itw −

4t'!'1* − iK$"
*2 + $2

+
4'#'1!*2 − $2" − 2iK*$$

!*2 + $2"2

+
K + '1

* + i$ 1i#1 − e−t!*+i$"$/" −
2e−t!*+i$"'

* + i$ 2
+

K − '1

* − i$ 1i#1 − e−t!*−i$"$/ +
2e−t!*−i$"'

* − i$ 25
!A13"

and

0↑↓
inh!/,t" = +

0

t

ds0↑↓
hom!/,s"G'e−s!*−i$"/

+
2!1 − e−s!*−i$""'

i* + $
,t − s( . !A14"

From the density matrix calculated above we can extract
information about the qubit relaxation and dephasing during
the short interaction with the dissipative oscillator.

APPENDIX B: CONVERSION TO CIRCUIT PARAMETERS

In the following we give a recipe42 to obtain the param-
eters entering the calculation of this paper from the circuit
components,

$ =&2+Ic
eff

CS<0
11 − ' IB

Ic
eff(221/4

, m = '<0

2+
(2

CS,

' = −
MqSIqIB tan 3m

0

49
, * =

1
2RCS

,

tan 3m
0 =

IB

&Ic
eff2 − IB

2
, K =

IB

2e
& !

2m$
,

where <0=h /2e is the magnetic-flux quantum for a super-
conductor, MqS is the qubit-SQUID mutual inductance, Ic

eff is
the effective critical current of the SQUID at the particular
flux bias, IB is the amplitude of the dc bias pulse applied to
the SQUID, CS is the SQUID shunt capacitance, R is the
internal resistance of the measurement circuitry, and Iq is the
circulating current of the localized states of the qubit. The
expression for K is derived in the limit of a small geometric
inductance, low critical current, and large shunt capacitor
where one can approximate the SQUID dynamics as that of a
single Josephson junction with a variable critical current.
The momentum of the oscillator p and the voltage across the
SQUID are related by

V =
ep

CS!
, !B1"

where e is the electron charge. The parameters used to gen-
erate Figs. 2–4 and 6 are

Ic
eff = 0.5 8 10−6 A, IB = 0.87Ic

eff,

CS = 2 8 10−11 F, MqS = 100 8 10−12 H,

Iq = 438 8 10−9 A, & = 0.3 8 10−9 s,

#/!2+" = 0.8 8 107 Hz.
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