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We compute the decoherence caused by 1/f fluctuations at low frequencyf in the critical currentI0 of
Josephson junctions incorporated into flux, phase, charge, and hybrid flux-charge superconducting quantum
bits (qubits). The dephasing timetf scales asI0/VLSI0

1/2s1 Hzd, whereV /2p is the energy-level splitting
frequency,SI0

s1 Hzd is the spectral density of the critical-current noise at 1 Hz, andL;uI0dV /VdI0u is a
parameter computed for given parameters for each type of qubit that specifies the sensitivity of the level
splitting to critical-current fluctuations. Computer simulations show that the envelope of the coherent oscilla-
tions of any qubit after timet scales as exps−t2/2tf

2d when the dephasing due to critical-current noise domi-
nates the dephasing from all sources of dissipation. We compile published results for fluctuations in the critical
current of Josephson tunnel junctions fabricated with different technologies and a wide range inI0 and areaA,
and show that their values ofSI0

s1 Hzd scale to within a factor of 3 off144sI0/mAd2/ sA /mm2dgspAd2/Hz at
4.2 K. We empirically extrapolateSI0

1/2s1 Hzd to lower temperatures using a scalingTsKd /4.2. Using this result,
we find that the predicted values oftf at 100 mK range from 0.8 to 12ms, and are usually substantially
longer than values measured experimentally at lower temperatures.
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I. INTRODUCTION

Superconducting devices involving Josephson junctions
are leading candidates for quantum bits(qubits) because of
their manufacturability, controllability, and scalability.
Broadly speaking, there are three types of superconducting
qubits. The first type is the flux qubit, which consists of a
superconducting loop interrupted by either one1,2 or three3,4

junctions. When the qubit is biased at the degeneracy point,
the two states represented by magnetic flux pointing up and
pointing down are superposed to produce symmetric and an-
tisymmetric eigenstates. Quantum coherent behavior has
been verified by means of spectroscopic measurements of the
level splitting of these states1,3 and by the observation of
Rabi oscillations.4 The second type of qubit is based on the
charge degree of freedom, and consists of a nanoscale super-
conducting island coupled to a superconducting reservoir via
a Josephson junction. The two quantum states differ by a
single Cooper pair. Superpositions of these states have been
demonstrated through Rabi oscillations,5 and signatures of
the entanglement of two charge qubits have been observed.6

These two qubit types are distinguished by whether the Jo-
sephson coupling energyEJ or the charging energyEC domi-
nates the junction dynamics. A hybrid charge-flux device was
operated in the crossover between these two regimes, at its
degeneracy points in both charge and flux;7,8 it exhibited the
longest dephasing time yet reported for a superconducting
qubit, about 0.5ms. The third type is the phase qubit, which
consists of a single Josephson junction current biased in the
zero voltage state.9,10 In this case, the two quantum states are
the ground and first-excited states of the tilted potential well,
between which Rabi oscillations have been observed. Unlike
the other qubits, the phase qubit does not have a degeneracy
point.

For all these qubits, the measured decoherence times are
substantially shorter than predicted by the simplest models of

decoherence from dissipative sources and than would be nec-
essary for the operation of a quantum computer. As a result,
there is an ongoing search to identify additional sources of
dephasing. In the case of charge qubits, the coherence times
have been limited by low-frequency fluctuations of back-
ground charges in the substrate which couple capacitively to
the island, thus dephasing the quantum state.11 Flux and
phase qubits are essentially immune to fluctuations of charge
in the substrate, and, by careful design and shielding, can
also be made insensitive to flux noise generated by either the
motion of vortices in the superconducting films or by exter-
nal magnetic noise. The flux-charge hybrid, operated at its
double degeneracy point, is intrinsically immune to both
charge and flux fluctuations. However, all of these qubits
remain sensitive to fluctuations in the Josephson coupling
energy and hence in the critical current of the tunnel junc-
tions at low frequencyf. These fluctuations lead to variations
in the level splitting frequency over the course of the mea-
surement and hence to dephasing.

Martinis et al.12 analyzed decoherence in phase qubits due
to low-frequency critical-current fluctuations, while Paladino
et al.13 and Cottetet al.14 treated decoherence in charge qu-
bits due to low-frequency charge noise. In this paper, we
explore the effects of low-frequency noise in the critical cur-
rent on the dephasing timestf in various superconducting
qubits incorporating Josephson junctions, and compare our
results with measured decoherence times. In Sec. II we dis-
cuss two sources of low-frequency fluctuations in supercon-
ducting circuits and explain how they induce dephasing. In
Sec. III we calculate the sensitivity of several Josephson qu-
bit schemes to critical-current variations, using parameters
from recent experiments reporting dephasing times. In Sec.
IV we compile a list of measurements of the critical-current
noise in a variety of junctions and obtain a “universal value”
that we use in subsequent estimates of decoherence times. In
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Sec. V we estimate dephasing times limited by 1/f noise,
using numerical simulations to elucidate the dephasing pro-
cess. Section VI contains some concluding remarks.

II. DECOHERENCE MECHANISM
FOR LOW-FREQUENCY NOISE

We consider two intrinsic sources of low-frequency noise
in superconducting devices which can cause dephasing. Flux
vortices hopping between pinning sites in superconducting
films, illustrated in Fig. 1(a), result in fluctuations of the
magnetic flux in multiply connected superconducting cir-
cuits. Specifically, in superconducting flux qubits operating
at the degeneracy of the left and right circulating current
states, external magnetic fluxFx breaks the degeneracy,
causing a second-order change in the tunneling frequency.
This mechanism can usually be made negligible in devices
fabricated with linewidths less than approximatelysF0/Bd1/2

for which vortex trapping in the line is suppressed;15,16 here
F0;h/2e is the flux quantum andB is the field in which the
device is cooled.

A more serious problem is critical-current fluctuations
caused by charge trapping at defect sites in the tunneling
barrier, as in Fig. 1(b). In the prevailing picture, trapped
charges block tunneling through a region of the junction due
to the Coulomb repulsion, effectively modulating the junc-
tion area. In general, a single-charge fluctuator produces a
two-level, telegraph signal in the critical current of a junc-
tion, characterized by lifetimes in the untrapped(high
critical-current) statetu and the trapped(low critical-current)
statett. This produces a Lorentzian bump in the power spec-
tral density with a characteristic timeteff=s1/tt+1/tud−1.
The dynamics of such fluctuators in junctions have been ex-
tensively studied,17–19 and the lifetimes have been measured

as a function of temperature and voltage bias. There is strong
evidence from the voltage dependence that the dominant
charges enter the barrier from one electrode and exit to the
other, and that the fluctuators exhibit a crossover from ther-
mal activation to tunneling behavior at about 15 K. In the
tunneling regime, the fluctuating entity has been shown to
involve an atomic mass, suggesting that ionic reconfiguration
plays an important role in the tunneling process. Interactions
between traps resulting in multiple-level hierarchical kinetics
have been observed,20 but usually the traps can be considered
to be local and noninteracting. In this limit, the coexisting
traps produce a distribution of Lorentzian features that super-
impose to give a 1/f-like spectrum.21,22

The parametric fluctuations in the qubit energy levels in-
troduce phase noise into the measurement of the probability
distribution of the qubit states. The key point is that the
determination of the qubit state and its evolution with time
requires a large number of measurements. In the presence of
low-frequency noise, the energy levels fluctuate during the
data acquisition. This causes an effective decoherence in the
qubit, as illustrated in Fig. 1(c). The resulting decay of the
qubit-state probability amplitude reflects the spectrum of the
low-frequency noise.

III. QUBIT SENSITIVITY TO CRITICAL-CURRENT
FLUCTUATIONS

We consider a superconducting qubit with quantum states
separated in energy by"V, and assume that the splitting
depends on the critical current of one or more Josephson
tunnel junctions in the qubit. The sensitivity of the energy
difference to critical-current fluctuations is described by the
dimensionless parameter

L = uI0dV/VdI0u, s1d

the fractional change in the energy separation for a given
fractional change in the critical currentI0. The value ofL
depends on the qubit architecture, the device parameters, and
the bias point. A large value ofL indicates that a particular
qubit type is vulnerable to decoherence caused by critical
current fluctuations; small values indicate a more robust qu-
bit design for fluctuations of the same amplitude. In the fol-
lowing sections, we calculateL for a variety of qubit designs
and parameters used in recent experiments. In some cases,
we can develop analytical expressions for the energy separa-
tion, which often is a tunneling matrix element, from which
L can be calculated; in others, it is necessary to carry out
numerical calculations to estimate the response to critical
current changes.

A. One-junction flux qubit (ground state)

We first consider the one-junction flux qubit[Fig. 2(a)],
consisting of a single Josephson junction of critical currentI0
and capacitanceC in a loop of inductanceL biased with
an applied flux Fx. At the degeneracy pointFx=F0/2,
the energy versus flux curve is a degenerate double-well
potential given by Vsfd=sF0

2/8p2Ld f2bL cossfd
+sf+p+2pFx/F0d2g, in terms of the junction phasef. The

FIG. 1. Effects of low-frequency flux and critical-current fluc-
tuations in a superconducting qubit.(a) Flux modulation from vor-
tices hopping into and out of a loop, and critical-current modulation
from electronse− temporarily trapped at defect sites in the junction
barrier.(b) A single-charge trap blocks tunneling over an areaDA,
reducing the critical current.(c) Fluctuations modify the oscillation
frequency, inducing phase noise which leads to decoherence in
time-averaged ensembles of sequential measurements of the qubit
observableZ.
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two states of lowest energy are approximately symmetric and
antisymmetric combinations of localized states in the left and
right wells, characterized by clockwise and counterclockwise
circulating currents, between which the “phase particle” tun-
nels [Fig. 2(b)]. Fluctuations in the flux tilt the potential
wells, weakly changing the tunneling frequency in second
order [Fig. 2(c)]; however, critical-current fluctuations di-
rectly modulate the barrier height, producing an exponential
change in the qubit tunneling frequency[Fig. 2(d)].

We now calculate the tunnel splitting, or more precisely
the energy difference between the ground and first excited
state, for the one-junction flux qubit using three different
methods. The purpose of this pedagogical exercise is to un-
derstand in which regimes certain approximations are valid.
We build on this insight to analyze other qubits later in this
paper.

Our first approach is to approximate the potential with a
quartic polynomial and quote an analytic result for the tun-
neling frequency in the semiclassical WKB approximation,2

V = v0 expf− hsbL − 1d3/2g. s2d

Here v0;2fsbL−1d /LCg1/2 is the classical frequency of
small oscillations in the bottom of the wells,bL
;2pLI0/F0 is the dimensionless screening parameter, and

h;s8I0CF0
3/p3"2d1/2 is a parameter that describes the

“degree of classicality” and hence determines when quantum
tunneling is important.2 Figure 3(a) plots V /2p vs bL for
stated values ofL andC.

However, the semiclassical approximation is valid only in
the regime where the bound states in each well nearly form a
continuum, which is far from the case we consider here with
only one bound state in each well. To obtain the correct
splittings for the ground state in the WKB approximation,
one must modify Eq.(2). A more accurate result is23

V = 2v0Îmv0fm
2

p"
eke−S0/", s3d

whereS0 is the action along the tunneling direction

S0 =E
−fm

fm Î2mVsfddf, s4d

andk is a correction factor

k =E
0

fmF mv0

Î2mVsfd
−

1

fm − f
Gdf. s5d

Here m=CsF0/2pd2 is the effective mass of the tunneling
particle, and ±fm are the positions of the minima of the
symmetric double-well potential. The great advantage of this
formulation of the WKB approximation, beyond its validity
for ground-state splittings, is that the limits of the integrals
are at the true extrema of the potential rather than the clas-
sical turning points, making the calculation more tractable.

FIG. 2. One-junction flux qubit.(a) Schematic.(b) Symmetric
double-well potential for flux biasFx=F0/2. (c) Flux fluctuation
DF couples toV only in second order.(d) Critical-current fluctua-
tion DI0 produces an exponential change inV.

FIG. 3. Three quantities for the ground state of the one-junction
flux qubit at the degeneracy point calculated using the standard
WKB approximation(solid), WKB approximation corrected for the
ground state(dashed), and numerical solution for the wave func-
tions (points), plotted as a function of the dimensionless screening
parameterbL. (a) Splitting frequency between ground state and first
excited state,(b) sensitivity parameterL, and (c) effect of critical
current fluctuations on the tunneling rate for three values ofdI0/ I0.
Parameters are from Friedmanet al. (Ref. 1): L=240 pH andC
=104 fF.
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By evaluating Eqs.(3)–(5) numerically, we obtain a sec-
ond result forV, shown in Fig. 3(a) as a function ofbL. We
see that the two forms of the WKB approximation are similar
in overall shape, withV vanishing atbL=1, wherev0 be-
comes zero, and decreasing exponentially at larger values of
bL. However, the two forms disagree quantitatively at small
values ofbL and diverge from one another at large values of
bL. Thus, we turn to a full quantum-mechanical solution of
the degenerate double-well potential to resolve this discrep-
ancy.

To find the wave functions we first choose a set of basis
functionsbisfd. By calculating the Hamiltonian matrix ele-
ments

Hmn=E
−`

`

bnsfdHsfdbmsfddf s6d

and the overlap matrix

Bmn=E
−`

`

bnsfdbmsfddf, s7d

we can find the energy levels as the eigenvalues of the matrix

K = B−1H. s8d

To solve for the ground-state wave function we choose as our
basis set 12 simple harmonic-oscillator wave functions cen-
tered in the left well and 12 more centered in the right well.
We use the Hamiltonian

Hsfd =
F0

2

8p2L
F2bL cossfd + sp + f + fxd2 + LCS ]

]f
D2G ,

s9d

where fx;2pFx/F0. The results forfx=0 are shown in
Fig. 3(a). For large values ofbL the full solution approaches
the modified WKB expression, Eq.(3), asymptotically, but
the difference diverges at small values ofbL. The standard
WKB approximation gives a tunneling frequency which is
inconsistent with the full solution almost everywhere.

Figure 3(b) showsL vs bL for the three calculations. The
two semiclassical approximations predict thatL vanishes at
certain values ofbL, but this is an artifact of the apparent
maxima in Fig. 3(a); the full quantum treatment shows no
zero. Figure 3(c) plots the fractional change in tunneling fre-
quency,d V /V, vs bL for the three calculations for three
fractional changes in critical current,dI0/ I0. We note that for
bL*1.1, the three approaches differ by no more than a factor
of about 2.

B. One-junction flux qubit (excited states)

The demonstration of a one-junction flux qubit did not
employ ground states, however, but excited states in deep,
tilted potential wells.1 The WKB approximation is again un-
suitable, for two main reasons. First, treating asymmetric po-
tentials is more difficult, because of different prefactors for
the two wells, but this can be overcome.24 More importantly,
resonant tunneling, which causes a dramatic increase in the
tunneling rate when two energy levels are aligned, is entirely

absent from the WKB approximation. Thus, the only way to
calculate the sensitivity to critical-current fluctuations is to
solve the Schrödinger equation for the energy levels numeri-
cally.

We adopt the approach of Sec. IV with a different basis
set. We use 60 harmonic-oscillator wave functions centered
between the minima of the two wells, so thatB becomes the
identity matrix. To reproduce the experimental conditions,1

we setbL=1.5 and find the energy levels for successive val-
ues of applied fluxfx. We find that the energy difference
between the third and ninth excited states has a local mini-
mum atfx<0.51432p, corresponding to the condition for
resonant tunneling. The potential, wave functions, and en-
ergy levels for this situation are shown in Fig. 4. Fixingfx at
this value and sweepingbL, we calculate the relevant quan-
tities for low-frequency critical-current fluctuations. The re-
sults are shown in Fig. 5.

In Fig. 5(a) we see that near the resonant pointbL=1.5,V
decreases with increasing barrier height, as one would expect
from a semiclassical analysis, but reaches a local minimum
at a slightly higher value. AsbL is increased further,V in-
creases because the energy levels are no longer resonant. At
the minimum, the derivative quantityL vanishes, as the
changing barrier height balances the loss of resonance, indi-
cating that the system is immune to small critical-current
fluctuations at this point. We note that on resonance, whereL
is almost optimally bad, the system is immune to flux noise,
because the energy is a minimum as a function of flux. Thus,
one can exchange sensitivity to critical-current fluctuations
for sensitivity to flux noise as appropriate.

C. Three-junction flux qubit

The three-junction qubit consists of three Josephson junc-
tions of critical currentsI0

a, I0
b, andI0

c in series in a supercon-
ducting loop of geometric inductanceL, as shown in Fig.
6(a).3,4,25The smallest of the junctions,c, primarily controls
the barrier height while the larger two junctions,a and b,
serve as Josephson inductors. We parametrize this device by
the ratios of the Josephson coupling energy of the three junc-

FIG. 4. Eigenfunctions and energy levels for a one-junction flux
qubit. Absolute values of eigenfunctions(thin lines), each offset so
that it asymptotes to the corresponding energy level, are shown as a
function of the junction phased. The thick line is the asymmetric
double-well potential. Eigenfunctions are labeled according to cor-
responding single-well harmonic-oscillator quantum numbers. Pa-
rameters are as in Fig. 3, withbL=1.5; the fluxfx<0.51432p
produces a resonance between the 3L (left) and 9R (right) states.
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tions to the charging energyEC=e2/2C, whereC is the mean
capacitance of the two larger junctions:EJ

a,b,c/EC

= I0
a,b,cF0/2pEC=ga,b,c. We assume that the junctions are in

the phase regime wherega,b,c@1 and require that
1/2,2gc/ sga+gbd,1 so that a double-well potential is
formed. We consider the junctions individually so that we
may allow their critical currents to fluctuate independently,
and consider the case where asymmetries in the large junc-
tions are small, i.e., 2gb/ sga+gbd!1. The energy landscape
at applied fluxF0/2 exhibits multiple wells, most notably
two degenerate wells separated by a tunnel barrier that is
much lower than the barriers to all other flux states. The
potential can be written

Vsdd = sEC/8Cdsga + gb + 4gc cosdd2, s10d

whered is a variable aligned with the tunneling direction that
is derived from the three junction phases. In the small-
inductance limit, we can apply the WKB approximation
given in Eqs.(3)–(5) to calculate the rate for this so-called
intracell tunneling

V = sGEC/"dexp5−

s4gc + ga + gbdFÎs4gcd2 − sga + gbd2 − sga + gbdarccosSga + gb

4gc DG
2Îgcsga + gbds4gc + ga + gbd

6 , s11d

where G=s4gc−ga−gbd5/4sga+gbd1/4s4gc+ga+gbd /
2p1/2sgcd7/4. We note that the exponent reduces to a form
previously obtained25 when ga=gb; however the prefactor
differs.

To calculate the effects of low-frequency noise, we must
account for the fact that the critical currents of the three
junctions fluctuate independently. Because the small and
large junctions play different roles, we consider changes in

FIG. 5. Numerical solution for the excited states of an asymmet-
ric one-junction flux qubit.(a) Tunneling frequency between the
third excited state in the shallow well and the ninth excited state in
the deep well as a function ofbL for a system on resonance atbL

=1.5. (b) Derived sensitivity to critical-current fluctuations. Device
parameters are as in Fig. 3.

FIG. 6. Three-junction flux qubit.(a) Schematic showing induc-
tive loop, embracingF0/2 interrupted by three Josephson junctions.
(b) Tunneling frequency and(c) L vs Josephson-to-charging energy
ratio. Solid lines indicate dependence on large junction ratioga,b

with gc=28, and dashed lines indicate dependence on small junc-
tion ratio gc with ga=gb=35. EC=7.4 GHz for all plots.
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each separately. We adopt parameters used in the experi-
ments of Chiorescuet al.,4 ga=gb=35, gc=0.83ga,b=28,
andEC/2p"=7.4 GHz . In Fig. 6(b), we plot the tunneling
frequencyV /2p as a function of the Josephson-to-charging
energy ratios for each of the three junctions holding the other
two constant. Figure 6(c) showsLi =sgi /Vd]V /]gi, where
i =a,b, or c, as a function of the same variables. For the
experimental parameters, we calculateV /2p=7.96 GHz,
which differs somewhat from the experimentally observed
value of 3.4 GHz; however, the exponential dependence in
Eq. (11) magnifies parametric uncertainties, making exact
agreement unlikely. We see that the small junction is indeed
the dominant contribution toL, with La,b=4.6 and Lc
=10.4. Adding the contributions incoherently givesL=sLa

2

+Lb
2+Lc

2d1/2=12.3.

D. Single Josephson-junction (phase) qubit

Martinis and co-workers have used a single, current-
biased Josephson junction as a qubit, theu0l and u1l states
being the ground and first excited states of the tilted wash-
board potential well, as shown in Fig. 7(a). The energy sepa-
ration between energiesE0 andE1 is

V = sE1 − E0d/" < vp, s12d

where

vp = s2Î2pI0/CF0d1/2s1 − I/I0d1/4 s13d

is the small oscillation(plasma) frequency in the well. In
Fig. 7(b) we plot V vs I / I0 for the parameters used in the
experiments of Martiniset al.9 We determineL vs I / I0 from
Eq. (13), and plot the result in Fig. 7(c). At the bias point
used in the experiments,I =20.77mA sI / I0=0.985d, L has
the value 16 at a tunneling frequencyV /2p=6.9 GHz.

E. Quantronium (hybrid charge-flux) qubit

The qubit developed by the Saclay group consists of a
Cooper pair box, a small island with Josephson junctions of
critical currentI0 and capacitanceCj on each side, connected
in a superconducting loop containing a Josephson junction
with a much larger critical current[Fig. 8(a)].7 A capacitor
Cg connects the island to a voltage sourceVg, which deter-
mines the gate chargeNge. A magnetic flux applied to the
superconducting loop imposes a phase differenced across
the two junctions in series. The circuit parameters are se-
lected so that the Josephson energyEJ

a,b=F0I0
a,b/2p is com-

parable to the charging energyECP=s2ed2/2sCg+2Cjd. Thus,
the device operates in the crossover regime between the
charge and flux modes. For certain bias points, determined
by Ng andd, the qubit statesu0l and u1l correspond to oppo-
site circulating currents in the loop. The sense of this current
is detected by measuring the magnitude of the current pulse
required to switch the readout junction out of the zero volt-
age state. The qubit energy levelsE0 andE1 are controlled by
Nge andd according to the approximation8

E0,1= 7HF sEJ
a + EJ

bd
2

cossd/2dG2

+ fECPs1 − 2Ngdg2J1/2

.

s14d

We note that this approximation was derived for the condi-
tion EJ!ECP, although it provides a reasonable value for the
level splitting when this condition is not satisfied. WhenEJ
and ECP are comparable, as in the quantronium qubit, Eq.
(14) differs from an exact solution of the energy levels by
about 10% and is acceptable for our estimates of the influ-
ence of critical-current fluctuations. Thus, the qubit fre-
quency, which is proportional to the level spacing, is

"V = E1 − E0 s15d

FIG. 7. Single Josephson-junction qubit.(a) Schematic and(b)
energy-level diagram.(c) Variation of energy separation with bias
current. (d) L as a function of bias current. Parameters are from
Martiniset al. (Ref. 9): C=6 pF, corresponding to a junction area of
100 mm2, andI0=21.1mA.
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=2HF sEJ
a + EJ

bd
2

cossd/2dG2

+ fECPs1 − 2Ngdg2J1/2

. s16d

When Ng and d are adjusted to the optimal working point,
d=0 and Ng=1/2, the system is maximally insensitive to
phase and charge fluctuations; however, incoherent fluctua-
tions in the critical current of the small junctions couple
linearly to the level splitting without perturbing the phase or
charge to first order, givingL=2−1/2. Away from Ng=1/2,L
is reduced, as plotted in Fig. 8(b) for the parameters used in
the Saclay experiments,Cj =2.7 fF sECP/kB=0.68 Kd and
IO=18 nA fsEJ

a+EJ
bd /kB=0.86 Kg, but the device is no

longer immune to charge fluctuations.

IV. 1/ f CRITICAL-CURRENT FLUCTUATIONS

Critical-current fluctuations in Josephson junctions have
been extensively studied over the past two decades, mostly
to understand the low-frequency noise in superconducting

quantum interference devices(SQUIDs). As a result, most of
the reported measurements have been in the temperature
range 1−4 K on junctions of areas from 4 to 100mm2. We
first briefly describe scaling of the data by the junction area,
the critical current, and temperature.

As mentioned earlier, it is generally accepted that critical-
current noise in Josephson junctions arises from charge trap-
ping at defect sites in the barrier. A trapped charge locally
modifies the height of the tunnel barrier, changing the resis-
tance of the junction, and, in the case of a Josephson junc-
tion, also the critical current. For a junction of areaA, the
change in critical current isDI0=sDA /AdI0, whereDA is
the effective area of the junction over which tunneling is
blocked by the temporary presence of the trapped charge.
The critical-current spectral density for one trap is propor-
tional to sDI0d2, so that the spectral density forN identical,
independent traps scales asNsDI0d2=nAsDA /Ad2I0

2, where
n is the number of traps per unit area. Consequently, for a
given junction technology characterized by a trap densityn
and blocking areaDA, we expect the critical-current spectral
densitySI0

sfd to scale asI0
2/A. To test this hypothesis, we

have compiled a series of measurements of the 1/f critical-
current noise at temperatureT=4.2 K, taken in a variety of
junctions and dc SQUIDs by different groups(Table I). For
each, we list the critical currentI0 and areaA of the junc-
tions, which vary by several orders of magnitude, and the
magnitude of the critical-current noise spectral density at
1 Hz, SI0

s1 Hzd. We observe that the quantity
SI0

1/2s1 HzdA1/2/ I0 is remarkably constant, varying by less
than a factor of 3.

This result supports the charge trap model for the 1/f
critical-current noise, and, since it includes measurements on
different junction barrier materials(AlOx, InOx, NbOx) even
suggests that the product of the trap density and Coulomb
screening area must be similar in magnitude for these differ-
ent oxides.

Averaging these measurements, we estimate the critical-
current noise at 4.2 K for any junction of critical currentI0
and areaA to be

SI0
s1 Hz,4.2 Kd < 144

sI0/mAd2

A/mm2

spAd2

Hz
. s17d

The temperature dependence of the 1/f critical-current
noise is less firmly established. Since the charge traps re-
sponsible for the noise are thought to be in the tunneling
regime at low temperatures, one might expect that the tem-
perature dependence would be weak. However, the only
measurement of the spectral density of the critical-current
noise in Josephson junctions at low temperatures that we are
aware of showed aT2 dependence from 4.2 K down to about
300 mK.26 The issue of whether or not this behavior extends
to lower temperatures is of crucial importance to the devel-
opment of qubits involving Josephson junctions.

In the absence of other data or models, we take the opti-
mistic view thatSI0

sf ,Td scales quadratically with tempera-
ture and so is dramatically reduced at the low temperatures
where superconducting qubits are operated. We thus take as a
working hypothesis

FIG. 8. The quantronium qubit.(a) Schematic showing phase
differenced across two small Josephson junctions with chargeNg

on island between them. Readout junction with critical currentI0
r in

superconducting loop allows for measurement of circulating cur-
rent. (b) Level-splitting frequencyV /2p and (c) critical-current
sensitivityL vs Ng. Curves are plotted for the parameters reported
by Vion et al. (Ref. 7): I0=18 nA, Cj =2.7 fF; at the optimal work-
ing point Ng=1/2, d=0, L=2−1/2, and V /2p is calculated to be
17.9 GHz, slightly different from the observed value of 16.5 GHz.
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SI0
sf,Td < F144

sI0/mAd2

sA/mm2dS T

4.2 K
D2

spAd2G1

f
. s18d

The observedT2 dependence is incompatible with the
electron trapping mechanism in the tunneling regime, which
predicts a linear temperature dependence.21 There is strong
evidence that charge trapping occurs via tunneling in the
temperature range considered, so that the noise should be
relatively temperature independent. Furthermore, foreV,
kBT!2D, where D is the energy gap, both the available
number of single electrons and the available number of final
single-electron states scale as exps−D /kBTd, so that charge
trapping is expected to freeze out at low temperatures. This
leads one to seek alternative explanations. One possibility is
that the 1/f noise is associated with leakage currents at volt-
ages below 2D /e, which do not exhibit an exponential tem-
perature dependence. Such leakage currents presumably oc-
cur between opposing normal regions of the electrodes,
conceivably at the edges of the junctions or along the core of
a flux vortex penetrating the junction. An investigation of the
correlation between leakage currents and 1/f noise would be
of great interest. Other possible sources of the 1/f noise
include the motion of electrons between traps within the tun-
nel barrier, and the motion of vortices in or near the junction,
which could create a thermally activated contribution to the
critical-current fluctuations. We note that a thermally acti-
vated model yielding aT2 dependence has been proposed by
Kenyonet al.27 in the context of charge 1/f noise, but should
be equally applicable to critical-current noise. In this model,
one assumes that the two-state systems have asymmetric
wells, and that the depths of the wells are independent ran-
dom variables.

V. DETERMINATION OF DEPHASING TIMES

As described above, the low-frequency critical-current
fluctuations generate phase noise and decoherence in any
measurement of quantum coherent oscillations. To determine
the effect of the fluctuations ontf, we simulate the oscilla-
tions of the qubit state probability distribution.

In general, there are two techniques for observing quan-
tum oscillations in superconducting qubits. The qubit bias
can be pulsed suddenly to the degeneracy point where the
qubit oscillates between the measurement basis states at fre-
quencyV. After time t, the qubit bias is pulsed suddenly
away from the degeneracy point, after which the measure-
ment is performed.5 In this section we consider such a de-
generacy point measurement for a superconducting qubit in
the presence of low-frequency critical-current fluctuations.
We normalize the qubit states to +1 and −1 and always ini-
tialize the state to +1 before each bias pulse to the degen-
eracy point. For qubits coupled to Ohmic dissipation and
without critical-current fluctuations, the subsequent oscilla-
tions of the expectation value for a generalized quantum
variablekZstdl decay with the dephasing timetf

0 according to

kZstdl = e−t/tf
0

cosVt. s19d

We will see that the low-frequency noise provides an addi-
tional mechanism for decoherence and a different functional
form for the decay ofZkstdl.

Alternatively the qubit bias can remain fixed while the
qubit is driven between the ground and excited states with
resonant microwave pulses of varying width. This technique
has been used to measure Rabi oscillations of the quantum
state in several superconducting qubits.4,7,9 A measurement

TABLE I. Compilation of 1/f critical-current noise measurements in Josephson junctions of different
technologies, areasA, and critical currentsI0 at 4.2 K;SI0

s1 Hzd is the spectral density at 1 Hz. The relative
invariance of the scaled quantityA1/2SI0

1/2s1 Hzd / I0 supports the charge trapping mechanism for the 1/f noise.

Junction A I0 SI0
1/2s1 Hzd A1/2SI0

1/2s1 Hzd / I0

technology (mm2) (mA) spA/Hz1/2d fmmspA/Hz1/2d /mAg

Nb-AlOx-Nb 9 9.6 36 11

(Ref.28) 8 2.6 6 7

115 48 35 8

34 12 41 20

Nb-NbOx-PbIn 4 21 74 7

(Ref.26) 4 4.6 46 20

4 5.5 25 9

4 5.7 34 12

4 11.4 91 16

Nb-NbOx-PbInAu
(Ref. 29)

1.8 30 184 8

PbIn-InOx-Pb
(Ref. 30)

6 510 3300 15

Average 12
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of the dephasing timetf in this driven case requires a more
sophisticated pulse arrangement, such as a Ramsey fringe
sequence.4,7 We note that for the single Josephson-junction
phase qubit,9 resonant microwave driving is the only possible
technique for observing quantum oscillations. Nonetheless,
we expect our calculation of the dephasing due to critical-
current fluctuations from a simulation of an experiment in-
volving switching to and away from the degeneracy point to
give a reasonable estimate fortf in the microwave-driven
experiments as well.

For our simulations of the quantum oscillations at the de-
generacy point, we allow the qubit to evolve for timet, fol-
lowed by a single-shot measurement that dephases the qubit
and halts the coherent oscillations on a time scale much
faster than 2p /V (Fig. 9). We assume that the interval be-
tween consecutive single-shot measurements of the state is
tZ; this interval includes the time to initialize the state, the
delay time during which the qubit evolves, the sampling
time, the readout time, and any time allotted for the system
to thermalize following the dissipative measurement. To map
out the time dependence of the qubit state, we measure the
expectation valueNt times, at intervals separated by timetd,
each point being the average ofNZ measurements. From this
time evolution, we can determine the envelope and its char-
acteristic decay time, and, if the sampling frequency is above
the Nyquist frequency(twice the coherent oscillation fre-
quency), the oscillation frequency. The key point is that low-

frequency fluctuations in the critical current cause the oscil-
lation frequency to be different for each successive single-
shot measurement of the qubit, resulting in an effective
dephasing.

Because of the nature of 1/f noise, the resulting dephas-
ing depends both on the total number of samplesN=NZNt
(which sets the elapsed time of the experimentNtZ) and on
the sequence in which the measurements are taken. We con-
sider two cases, illustrated in Fig. 9. Method A is time-delay
averaging, in which we takeNZ successive measurements for
each time delay and average them to find the qubit expecta-
tion value at that delay time. Method B is time-sweep aver-
aging, in which we make a single measurement at each of the
Nt points, and then averageNZ such time sweeps to generate
the qubit time evolution. These differ because of the time
scales involved in 1/f noise: method A averages only high-
frequency fluctuations at each time-delay point, while
method B averages both high- and low-frequency compo-
nents. Data sampling schemes intermediate between these
extremes are also possible; these involve the averaging of
Ns,NZ multiple sweeps, each acquired by samplingNm
=NZ/Ns successive measurements at each time-delay value.

For method A, the expectation value after timetm=mtd,
with 1ømøNt, is given by

kZAstmdl =
1

NZ
o
n=1

NZ

cosHFV +
dV

dI0
dI0stAdGtmJe−tm/tf

0

=
1

NZ
o
n=1

NZ

coshVf1 + Ldi0stAdgtmje−tm/tf
0
, s20d

wheretA=fsm−1dNZ+ngtZ. For method B we have

kZBstmdl =
1

NZ
o
n=1

NZ

cosHFV +
dV

dI0
dI0stBdGtmJe−tm/tf

0

=
1

NZ
o
n=1

NZ

coshVf1 + Ldi0stBdgtmje−tm/tf
0
, s21d

wheretB=fsn−1dNt+mgtZ. Heretf
0 is the dephasing time set

by decoherence mechanisms besides 1/f noise, such as dis-
sipative processes in the qubit and the environment. To simu-
late the dephasing due to critical-current fluctuations alone,
we taketf

0 to be infinite. The quantitydI0std is the time-
varying deviation in the critical current from its average
value. Note that the changes in oscillation frequency scale
with L and with the fractional changes in the critical current
di0std=dI0std / I0.

We determine the time sequence of critical-current fluc-
tuations by Fourier transforming a spectrum of critical-
current fluctuations(Fig. 10). This spectrum is generated in
frequency space, with magnitudes randomly chosen from an
exponential distribution with a mean value equal to
fSI0

s1 Hzd / fg1/2 and randomly chosen phases with a uniform
distribution from 0 to 2p. This procedure is equivalent to
sampling real and imaginary components of the critical-
current fluctuations from Gaussian distributions centered at
zero magnitude, thus ensuring that the generated noise is
Gaussian. The actual critical-current fluctuations of the junc-

FIG. 9. Measurement sequences for mapping out coherent oscil-
lations. (a) Method A: time-delay averaging.(b) Method B: time-
sweep averaging. The interval between qubit state measurements is
tZ; the spacing of time-delay points istd.
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tion may not be strictly Gaussian if interactions between the
charged traps are present, but the assumption of Gaussian
statistics should give a good representation of the noise. The
relevant frequency range is fromfmax=1/tZ, set by the
single-shot measurement time, tofmin=1/NtZ, whereNtZ is
the total duration of the experiment. As an example, consider
an experiment in whichtZ=1 ms,NZ=100, andNt=100. We
generateN=104 time sequence points over the periodNtz
=10 s. We choose a representative qubit with a junction of
critical current I0=1 mA and area A=0.01mm2. At T
=100 mK, the universal 1/f noise spectral density from Eq.
(18) yields SI0

s1 Hzd=8.16310−24 A2 Hz−1, corresponding
to a root-mean-square fractional change in the critical current
of about 10−5 over the bandwidth from 10−1 to 103 Hz. Fig-
ure 10(a) shows a typical time trace simulated with these
parameters. The enhanced low-frequency components
present in the 1/f spectrum are evident in the fluctuation
spectrum.

To simulate the observed coherent oscillations, we insert
such a noise-time sequence of the required duration into Eqs.
(20) and(21). In Fig. 11, we show the probability amplitude
kZl calculated forNt=1000 time-delay points, each averaged
over NZ=3000 qubit state measurements(thus, N=33106)
acquired by sampling methods A and B. We assume the qubit
parametersI0=1 mA, A=0.01mm2, V /2p=1 GHz, andL
=100, withT=100 mK. The optimum sampling rate is larger
than the Nyquist frequency so that the characteristic qubit
oscillation frequency can be determined, and incommensu-
rate with the oscillation period of the qubit, so that the en-
velope of the oscillations is fully delineated and not aliased.
In this case, we arbitrarily choose the sampling frequency to
be the irrational numbers1+fdV /2p<2.618 GHz, where
f=s1+Î5d /2<1.618 is the Golden mean, so thattZ
=0.382 ns. The simulation results are insensitive to this
choice. The envelope function is calculated by demodulating

the oscillations via convolution of the averaged probability
amplitudes with the Gaussian filter kernel

Kstd = S 1

2ps2D1/2

exps− t2/2s2d, s22d

wheres is chosen to be the sampling periodtZ.
The oscillation amplitude of the qubit state is found to

decay with a Gaussian envelope function

kZlenv , exps− t2/2tf
2d, s23d

wheretf is a characteristic dephasing time. This form arises
from the frequency modulation of the qubit by the critical-
current fluctuations, in contrast to an exponential decay in-
duced by dissipative processes. We note that for long delay
times the envelope does not vanish, but instead saturates to a
noise floor level that corresponds to uniform randomization
of the oscillation phase by the critical-current fluctuations.
The noise floor isZnoise,NZ

−1/2 for both methods A and B.
Particularly for smallNZ, it is necessary to account for the
noise floor to make an accurate determination oftf. We do
this by fitting the probability envelope to the quadrature sum
of the dephasing decay and the noise floor

kZlenv = ÎsZnoised2 + fexps− t2/2tf
2dg2. s24d

Both the dephasing times and the scatter in the amplitude
envelope are different for the two methods. Method A gives
a longer dephasing time than method B, in this case by about
30%. This occurs because all of the qubit-state measure-
ments at a particular delay time for method A are acquired in

FIG. 10. (a) Simulated time sequence of critical-current changes
for an experiment withN=104 total qubit state measurements taken
at intervals oftZ=1 ms.(b) Corresponding 1/f frequency spectrum.

FIG. 11. Probability envelopes determined by simulations using
measurement methods A and B for a qubit withI0=1 mA,
SI0

s1 Hzd=8.16310−24 A2 Hz−1, A=0.01mm2, L=100, and
V /2p=1 GHz. The structure visible in the method B plot arises
from periodic sampling of the oscillations and is evidence of the
increased effective averaging relative to method A.
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a time intervalNZtZ, rather than over the entire experiment
durationNtZ as in method B. Thus, the number of decades of
1/ f noise that affect the qubit dynamics in method A is
logsNZd=3, compared to method B which samples logsNd
=6 decades. The scatter in the simulated data is also greater
for method A because the low-frequency variation of the
tunneling frequency is not averaged out. The origin of this
scatter can be best understood by choosing junction and mea-
surement parameters for whichtf andToscare comparable so
that the coherent oscillations and the amplitude decay can be
resolved simultaneously. In Fig. 12, we show the probability
amplitude for the same qubit parameters, but with a substan-
tially increased level of critical-current fluctuations, approxi-
mately 40 times larger in amplitude, calculated forNt=200.
Here, the discrete oscillations are clear for method B but
quite distorted for method A. The dephasing time for method
A is again longer, in this case by about 22%.

Because of the low-frequency divergence of 1/f noise,
the variance in the measured dephasing time is substantial,
and it is necessary to carry out a series of experimental runs
to determine the dephasing time accurately for a given set of
junction and measurement parameters. The spread in dephas-
ing times can be seen in Fig. 13 in which we plot distribu-
tions of the dephasing times obtained by methods A and B
for the qubit parameters used in Fig. 11 and for different
numbers of flux measurements. For any value ofN, the mean
dephasing time is larger for method A than for method B, as
expected, since fewer decades of 1/f noise affect the qubit;
the standard deviations are larger for method B.

With a series of such simulations for different junction
and qubit parameters, it is straightforward to establish thattf

is proportional toI0 and inversely proportional toV, L, and
SI0

1/2s1 Hzd. The dependence oftf on the number of measure-
ments, which sets the range of 1/f noise that is effective in
dephasing the qubit, can be found by carrying out the simu-

lations for different measurement parametersNt and NZ, as
shown in Fig. 13. The mean dephasing times for a series of
simulations with the same parameters described above are
shown in Fig. 14. As discussed above, method A gives longer
times than method B for all values ofN. We find that the
dephasing timetf for both methods decreases as a weak
power law ofN, which is expected since the frequency range
of the 1/f noise increases for largerNZ. For largeN, tf for
method B closely approaches the analytical result obtained
by Martinis et al.,12

tf
M < F 1

lns0.4NdG1/2 1

LsV/2pdF I0
2

SI0
s1 HzdG1/2

. s25d

At small N, minor deviations arise from approximations
made in the analytical expression and from systematic errors
in the fits to the probability envelopes obtained in the simu-
lations.

FIG. 12. Simulated probability oscillations with large critical
current fluctuations for measurement methods A and B. Qubit pa-
rameters as in Fig. 11, exceptSI0

s1 Hzd=1.39310−20 A2 Hz−1.

FIG. 13. Distributions of dephasing timestf calculated by
method A(open symbols) and method B(closed symbols) for dif-
ferent number of flux measurement pointsN=33104 (squares), 3
3105 (triangles), and 33106 (circles). Each distribution includes
1000 simulations of the coherent oscillations accumulated into bins
of width 2 ns. Qubit parameters are as in Fig. 11.

FIG. 14. Variation of the dephasing timetf with the number of
qubit-state measurementsN for methods A and B. Each point cor-
responds to the mean value oftf from 50 simulations of the oscil-
lation decay envelope. Qubit and noise parameters as in Fig. 11.
The solid line istf

M obtained from Eq.(25).
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Using our empirical expression forSI0
sfd, Eq. (18), and

taking the number of qubit measurements in a typical experi-
ment to beN=106, we find

tf
Asmsd < 20A1/2smmd/LsV/2pdsGHzdTsKd s26d

for sampling by method A and

tf
Bsmsd < 15A1/2smmd/LsV/2pdsGHzdTsKd s27d

for method B.
From these results, we estimate the values oftf and

Vtf /2p predicted for each of the qubit schemes described in
Sec. III, using the device parameters reported in the experi-
ments and assuming sampling by method B withN=106. We
have setT=100 mK and assumed explicitly that theT2 de-
pendence ofSI0

sfd extends to this temperature. These results
are listed in Table II. For comparison, we also list the mea-
sured dephasing times and the temperatures at which the ex-
periments were performed. Our estimated dephasing times
range between 0.8 and 12ms, with the longer times corre-
sponding to the qubit schemes with larger area junctions.
Such times would allow for several thousand oscillations of
the quantum state, making possible various quantum com-
puting operations. However, with the exception of quantro-
nium, the measured dephasing times are orders of magnitude
shorter than our estimated values, indicating that other
sources of decoherence are dominant. In the quantronium
experiments, the isolation obtained by operating at the opti-
mal working point, described in Sec. III E, enhances the co-
herence time nearly to the value where our estimates(at
100 mK) predict that critical-current fluctuations would have
a noticeable effect; however,SI0

may be substantially smaller
at the experimental temperature of 15 mK.

VI. CONCLUSIONS

Despite ongoing studies over more than two decades, the
origin of 1/f noise in the critical current of Josephson junc-
tions is still not fully understood. Although there is strong

evidence that the noise derives from a superposition of ran-
dom telegraph signals produced by charge trapping and un-
trapping processes, the origin of theT2 dependence observed
by Wellstood26 remains puzzling. This temperature depen-
dence can be explained within the framework of a two-well
potential in which the two barrier heights are independent
random variables, provided one assumes thermally activated
processes rather than the tunneling processes one might ex-
pect. Furthermore, the absence of a temperature dependence
of the form exps−D /kBTd at low temperatures is difficult to
understand in a picture in which the trap exchanges single
electrons with superconducting electrodes. Clearly, more
work is required to understand this behavior. We found that
the measured spectral density of the 1/f noise in the critical
current of junctions with different materials and a wide range
of areas and critical currents scales surprisingly well as
f144sI0/mAd2/ sA /mm2dgspAd2/Hz at 4.2 K. Based solely on
the results of Wellstood we have chosen to scale this number
with sT/4.2 Kd2 to predict the 1/f noise at 100 mK. How
well this scaling remains valid as more junctions are inves-
tigated and whether theT2 dependence holds down to(say)
10 mK are questions that should be addressed with some
urgency. These measurements must of necessity be made
with a SQUID amplifier; the use of submicrometer junctions
with relatively high critical currents should enhance the mag-
nitude of the noise and make its observation more straight-
forward.

For four different qubits we calculated the parametric ef-
fect of small changes in the critical currentI0 on the energy
separation"V at the operating point. Using the normalized
parameterL= uI0dV /VdI0u and the extrapolated magnitude
of the 1/f noise we investigate dephasing in these qubits at
0.1 K. In agreement with the treatment of Martiniset al.,12

we find that the sources of decoherence accumulate ast2, so
that the decoherence is not interpretable as a rate. Rather, the
frequency is different each time a measurement is made. In
all cases wheretf has been measured, the calculated values
due to critical current 1/f noise are greater than the mea-
sured values. Furthermore, if theT2 dependence of the 1/f

TABLE II. Estimated dephasing times at 100 mK due to 1/f noise in I0 for various qubit schemes. Measured dephasing times and
experimental temperatures are included where measurements exist. For the one-junction flux qubit columns, value ofV /2p were calculated
as described in the text. All other values ofV /2p were taken from corresponding experiments. Values ofL for each qubit scheme were
calculated as described in Sec. III.

Parameter One-junction
flux qubit

(ground state)

One-junction
flux qubit

(excited state)
(Ref. 1)

Three-junction
flux qubit
(Ref. 4)

Single
junction
(Ref. 9)

Quantronium
(Ref. 7)

I0smAd 1.46 1.46 0.5 21.1 0.018

Asmm2d 2 2 0.05 100 0.02

L 40.6 71.5 12.3 16 0.7

V /2psGHzd 3.4 0.59 3.4 6.9 16.5

calc tfsmsds100 mKd 1.5 5.1 0.8 14 1.8

meastfsmsdsT/mKd ... ... 0.02(25) 0.01(25) 0.50(15)

calc Vtf /2ps100 mKd 5100 3000 2700 97 000 30 000

measVtf /2psT/mKd ... ... 68(25) 69(25) 8000(15)

VAN HARLINGEN et al. PHYSICAL REVIEW B 70, 064517(2004)

064517-12



noise does continue at temperatures down to(say) 10 mK,
the predicted decoherence time, which scales as 1/T, will
become an order of magnitude longer at this temperature.
Nonetheless, although critical-current 1/f noise appears not
to be the limiting source of decoherence in experiments con-
ducted to date, ultimately this mechanism will present an
upper bound ontf.

Although the level of 1/f noise is remarkably constant for
existing junction technologies, there may be alternative
schemes for growing the tunnel barrier that reduce the num-
ber of charge traps in the barrier, and hence reduce the noise.
We note also that even in the presence of low-frequency
noise, the use of various pulse sequences, such as spin
echoes,4,7,11,31or bang-bang pulses32 can significantly reduce
its effects.

Finally, in the case of flux qubits this formulation could
be extended to the effects of 1/f flux noise originating from

either magnetic vortex motion or current noise in the current
supply by calculating the quantitydV /dF.
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