
Abstract

Superconducting circuits operated at low temperatures have led to rapid advances in quan-

tum information processing as well as quantum optics in the microwave regime. Engineered

quantum systems with a dense spectrum of modes coupled to artificial atoms, or qubits,

formed from superconducting circuits offer an opportunity to explore large-scale entangle-

ment or perform quantum simulations of many-body phenomena. Recent research efforts into

artificial metamaterials have yielded microwave and optical systems with numerous counter-

intuitive properties, including left-handed transmission, where the group velocity and phase

velocity for a wave point in opposite directions. Metamaterial resonators implemented with

superconducting thin-film circuits provide a route to generating dense mode spectra in the

microwave regime for coupling to qubits. In this thesis, we discuss the implementation of

such superconducting metamaterial resonators. First, we derive the dispersion relation for

one-dimensional metamaterial transmission lines and we describe the formation of resonators

from such lines and their quality factors. Next, we describe the design and fabrication of

transmission-line metamaterial resonators using superconducting thin films. We character-

ize the metamaterials through low-temperature microwave measurements as well as Laser

Scanning Microscope (LSM) images of the microwave field distributions in the circuit. We

compare these various measurements with numerical simulations of the microwave properties

of the circuits, including simulated current density and charge density distributions for the

excitation of different resonance modes. Following the successful realization of dense mode

spectra in these circuits, we have initiated the first experiments with a superconducting

transmon qubit coupled to a metamaterial resonator and we describe our progress in this

direction.
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Chapter 1

Motivation and introduction

Quantum optics realizes the interaction of atoms with photons in a cavity using quantum

electrodynamics (QED) [4], where the interaction between atoms and a cavity is made strong

by confining the field into a small mode volume [5]. Instead of using real atoms, circuit QED,

or cQED has taken a step further by using superconducting circuits as the artificial atoms,

also known as qubits, to interact with a superconducting circuit microwave resonators [5–

7]. In cQED, the microwave resonators are often made by distributed coplanar waveguide

(CPW) cavities patterned from superconducting thin films [8], although they can also be

formed by other resonant structures, including 3D waveguide cavities [9, 10]. The interaction

is realized by the qubit(s) capacitive coupling to voltage antinodes or inductive coupling

to current antinodes of standing waves in the microwave resonator [5]. This coupling is

typically used for the readout of superconducting qubits in quantum information processing

schemes [11], the generation of entanglement between multiple qubits [12], or a variety of

explorations of quantum optics in the microwave regime [13]. The strong coupling regime,

where the coupling strength becomes comparable to characteristics transition energy scales

of the constituent systems, can be achieved in cQED [14–16]. Similarly to the cavity QED,

cQED also permits the strong coupling between the qubit and the photonic modes in the

cavity due to both the large transition dipole of the qubit and the small mode volume of
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the cavity. The cQED approach also has a benefit of being flexibly engineered using entirely

human made elements, which makes it possible for multi-modes coupling and for engineering

of specific parameters like transition energies and coupling strengths. [17–21].

Recently, there have been several efforts addressing the generation of multi-mode spectra

in cQED systems. By using long (∼ 1 m), transmission-line resonators, the high harmonics

(n ∼ 75) can be spaced closely enough to allow for simultaneous multi-mode coupling with a

superconducting qubit [22]. Another approach involves the fabrication of arrays of coupled

superconducting thin-film resonators for photonic quantum simulation [23, 24]. Supercon-

ducting thin-film cQED arrays with multiple resonances have also been investigated for a

multi-mode quantum memory [25, 26]. In addition, microwave frequency combs have been

generated by pumping the superconducting nonlinearity in a thin-film resonator [27].

An alternative route for implementation of novel, dense multi-mode spectra coupling is to

use left-handed metamaterial transmission lines as the cavity. Left-handed materials having

both a negative permeability and permittivity, which leads to a negative index of refrac-

tion and left-handed transmission properties, were first described in the last century [28].

More recently there have been numerous investigations of a variety of counterintuitive op-

tical properties in these systems, including cloaking [29] and superlensing [30]. Research in

this direction is closely connected to the field of photonic band-gap engineering [31]. Sci-

entists have not discovered any natural material with left-handed optical properties, thus

metamaterials are required in order to create left-handedness artificially. The metamaterial

uses man-made structural elements, which in general are smaller than the wavelength of

the radiation of interest and arranged in a dense lattice to perform as an effective optical

medium. Here, we follow this approach with the extension that we explore the system up to

the limit of Bragg reflection where the wavelength approaches the lattice constant.

An example of metamaterials that engineers make to exhibit left-handed properties is the

arrays of wires and split-ring resonators (SRR) [32]. Such metamaterials can achieve negative

permittivity and negative permeability in certain frequency ranges [33, 34], and can be made
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to have very low losses by using supercondutors as the material of making the SRRs [35, 36].

The superconducting quantum interference device, also known as SQUID, is another building

block for superconducting metamaterials [37–39] that present left-handedness using quantum

effects [40].

The left-handed metamaterial transmission line formed from lumped circuit elements is

one of the realizations of the left-handed medium that have been proposed [41] and stud-

ied [42, 43] on the macroscopic scale for a variety of applications of microwave devices. The

left-handed property for this system is equivalent to a decreasing dispersion relation ω(k)

for increasing magnitude of the wavenumber |k|. The previous study of lumped-element

metamaterial resonator includes the implementation of room-temperature metamaterial res-

onators and antennas based on zeroth-order resonances [44], leaky wave antennas [45], and

novel directional couplers [46]. There have been efforts to develop metamaterial resonators

from high-temperature superconducting films in order to address the effects of resistive losses

in the lumped elements [47]. Superconducting metamaterials using Josephson elements in

the array lattice have also been reported [48–51]. There are also proposals for using super-

conducting metamaterials for analog quantum systems to simulate the spin-boson model [3]

and to investigate the quantum effects in the circuit analog of Hawking radiation [52]. Other

applications of superconducting metamaterials include the generation of multi-partite en-

tanglement [3], the enhancement, inhibition, and coherent control of light-matter interac-

tions [53, 54], quantum-limited amplification of microwave signals [55], and coherent wave-

length conversion [56]. Inspired by Ref. [3], simultaneous multi-mode strong coupling can

be realized by coupling a qubit to a hybrid line resonator consisting of both left-handed and

right-handed sections.

In this thesis, I will present the design, fabrication, and low-temperature microwave

measurements to characterize the mode structure of a superconducting metamaterial res-

onators, along with Laser Scanning Microscope (LSM) imaging experiments to visualize the

microwave field distributions. The measured spectrum of metamaterial resonators exhibits
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a high density of modes as expected. The LSM imaging results illustrate the standing wave

patterns for metamaterials. In addition, I compare the experimental measurements with nu-

merical simulations, electromagnetic field (EM) simulations, as well as analytic calculations.

All of these approaches are in reasonable agreement with the experimental results. Some

important analytic results, such as the coupling quality factors of discrete transmission line

resonators, will be introduced for the first time. In Chap. 2, I will introduce the general

idea of left-handed metamaterials. I will discuss the conventional right-handed transmis-

sion line in Chap. 3 and the left-handed transmission line in Chap. 4. In Chap. 5, I will

discuss the properties of resonators for cQED made by left-handed transmission line. Chap-

ters 6-8 describe the realization, measurements, and comparison with simulations of the

superconducting metamaterial resonator. Chapter 9 is about the initial implementation of

the metamaterial resonator in cQED where a flux tunable transmon qubit is coupled to the

metamaterial. The fabrication process will be described in Chap. 10.
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Chapter 2

Introduction of left-handed material

In uniform isotropic linear materials, the supported electromagnetic (EM) plane waves have

electric field ~E, magnetic field ~B and the wave vector ~k obeying the right hand rule. Mean-

while, the Poynting vector ~S of the EM wave is also along the same direction with ~k since:

~S = ~E × ~H, (2.1)

where ~H is proportional to ~B as µ ~H = ~B [57]. According to the right hand rule, the direction

of ~E and ~B will automatically define the directions of the EM wave and the energy flow. The

EM response of such systems is considered “right-handed”, where the vacuum is a simple

example.

In optics, the index of refraction, n, describes how light propagates through the medium

as ratio of the phase velocity, v compared to the speed of light in free space, c:

n =
c

v
. (2.2)

When light passes through two media with different indices of refraction, it will change

direction and appears to be refracted. The sines of the angles of incidence and refraction are
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found to have the inverse of the ratio of the phase velocites (Fig. 2.1a):

sin θ1

sin θ2

=
v1

v2

=
n2

n1

, (2.3)

which is called the Snell’s law [58]. The result is well known and often used to explain the

refracted image of an object in water. The index of refraction can also be written as

n =
√
εrµr, (2.4)

where εr is the material’s relative permittivity, and µr is its relative permeability [59]. It is not

clear how EM waves would propogate in a material where both permittivity and permeability

are nagetive. In 1967 (published in 1968), Veselago discussed this type of situation [28] for

the first time. In Ref. [28], he showed that having simultaneous negative permittivity and

permeability would result in ~E, ~B and the wave vector ~k forming a left-handed set. To prove

it, we consider the normal Maxwell’s equations in a charge and current free space:

∇× ~E =− ∂ ~B

∂t
(2.5)

∇× ~H =
∂ ~D

∂t
(2.6)

∇ · ~D =0 (2.7)

∇ · ~B =0. (2.8)

These allow a well-known set of plane wave solutions for frequency ω and wavevector ~k [57]:

E =E0e
i(k·x−ωt) (2.9)

H =H0e
i(k·x−ωt). (2.10)
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Under conditions Eqs. (2.7)-(2.8), we have:

E =E0e
i(~k·~x−ωt) (2.11)

B =B0e
i(~k·~x−ωt) (2.12)∣∣∣∣E0

B0

∣∣∣∣ =v =
1
√
µε
. (2.13)

This plane wave has the wave vector ~k, ~E and ~B forming a right-handed set. For linear

isotropic media, we have:

µ ~H = ~B (2.14)

ε ~E = ~D. (2.15)

The first two Maxwell’s equations can be written as:

∇× ~E =− µ∂
~H

∂t
(2.16)

∇× ~H =ε
∂ ~E

∂t
. (2.17)

If ε and µ are simultaneously negative, like ε̃ = −|ε| and µ̃ = −|µ|, Eq. (2.16) and (2.17) can

be rewritten as:

∇× ~E = −µ̃∂
~H

∂t
⇒ ∇× ~E = −µ

∂
(
− ~H

)
∂t

(2.18)

∇× ~H = ε̃
∂ ~E

∂t
⇒ ∇×

(
− ~H

)
= ε

∂ ~E

∂t
. (2.19)

The solutions can be found as:

E =E0e
i(−~k·~x−ωt) (2.20)

H =H0e
i(−~k·~x−ωt). (2.21)
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Compared with Eqs. (2.9-2.10), the minus sign in the exponential term indicate that ~k, ~E

and ~B (which is µ ~H) now form a left-handed set. This type of material is thus referred

to as a “left-handed” material. However, the energy flowing vector in Eq. (2.1) is always

the right-handed product of ~E and ~H (which is in linear of ~B here). So, in a left-handed

material, the transmitted EM wave will have the phase velocity and the energy flowing in

the opposite direction. And since phase velocity vp = ω/k is in the direction of ~k while group

velocity vg = ∂ω/∂k is in the direction of ~S, plane wave propagating in left-handed medium

would have the vp and vg going in opposite directions.

θ0 θ1

θ2

k, S
k', S'

k", S"

(a) ε1>0 μ1>0

ε2>0 μ2>0

z

x

θ0 θ1

θ2

k, S k', S'

k"
ε1>0 μ1>0

ε2<0 μ2<0

z

x

(b)

θ2

θ2

S"

Figure 2.1: Illustration of how the EM wave refracts between two media. Red is the incident
wave with ~k and ~S, green is the refracted wave with ~k′ and ~S ′, blue is the reflected wave with
~k′′ and ~S ′′. The upper area where z > 0 is the medium 1 and the lower area where z < 0 is
medium 2. The z = 0 plane is the interface. An EM plane wave travels from medium 1 to
the medium 2. For simplicity without loosing generality, we consider the incident wave with
ky = 0, which means it will be confined in the y = 0 plane. (a) Normal situation where the
media on both side of the interface have positive ε and µ. The refracted wave will be on the
opposite side of the normal respect to the incident wave. (b) Negative index of refraction
case that the medium on the bottom has both negative permittivity and permeability and
the refracted wave is on the same side of normal respect to the incident wave. The energy
~S ′′ flows into the medium 2 but the wave front ~k′′ is pointing the opposite direction. The
reflected wave are the same for two different situations that θ0 = θ1.

More interestingly, when an EM wave travels from right-handed medium to left-handed

medium, Eq. (2.4) is no longer valid and the index of refraction is actually negative. On the

interface, the boundary condition requires the tangential part of ~k to be continuous. For
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normal media, this leads to the Snell’s law shown in Fig. 2.1(a). However, if the first medium

has ε1 > 0 and µ1 > 0, while the second medium has ε2 < 0 and µ2 < 0 (or vice versa), the

refracted wave will be bent to the same side of normal with respect to the incident wave.

When the wave crosses the boundary, the tangential part of ~k′′ is still continuous, but ~k′′z

switches direction because kz is negative in medium 2. This causes the total wave vector

~k′′ to follow in the direction of the green arrow shown in the Fig. 2.1(b), and the energy ~S ′′

flows in the opposite direction of ~k′′. Thus, in this case, the “left-handed Snell’s law” is:

sin θ1

sin θ2

= −n2

n1

. (2.22)

Eq. 2.22 suggests that medium 2 has a negative index of refraction.

Figure 2.2: A metamaterial flat lens built by NASA with 2-D array of split-ring resonators [1].
The total array consists of 3 by 20×20 unit cells with overall dimensions of 10×100×100 mm.

So far, scientists have not discovered any material that naturely exhibits both negative

permittivity and permeability. However, this doesn’t mean we cannot make a left-handed

material. Engineers have developed metamaterials which can allow us to achieve desired EM

properties from natural materials. Metamaterials are built by a series of individual unit cells

arranged in a particular format. Each cell is normally much smaller than the EM wavelength

and is designed so the combined structure can have some extraordinary properties in a certain

frequency range of interest. Various types of metamaterials with left-handed properties have
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been developed [1, 60–62]; we will focus here on one-dimensional circuit-based metamaterials.

To conclude, in this chapter, I have discussed materials with simultaneous negative

permittivity and permeability and explained why they would exhibit negative index of re-

fraction. I have also explained why they are called left-handed materials: the EM wave

propagating in this material will have ~E, ~B and ~k forming a left-handed set. No naturally

found material exhibits this interesting property, so it can only be made by metamaterials.
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Chapter 3

Conventional transmission lines

Superconducting transmission line resonators with high quality factors are used in cQED for

readout and control of superconducting qubits [63–67] along with applications in quantum

information storage [68–70] and qubit-qubit coupling [12, 71]. In this chapter, we discuss

the general type of transmission line which includes microstrip, coaxial, or other two-port

transmission lines and then we review the most typical conventional transmission-line res-

onator used in cQED formed from a coplanar waveguide (CPW) layout. Most derivations in

this chapter are following Ref [72].

3.1 Circuit model of transmission line

It’s commonly known that the normal metal type conducting wire is not a good material to

carry high frequency AC current: it faces multiple problems, including significant losses due

to the skin effect, and also the fact that such a single wire will have a significant impedance

at high frequencies [57]. A much better approach for delivering high frequency electrical

signals involves the use of two or more conductors in a transmission line (TL) configuration.

By definition, a transmission line is a specialized cable or other structure designed to conduct

alternating current of radio frequency.

A simple TL can be treated as a two-port network with impedance Z0 as in Fig. 3.1a.
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It can also be modeled as an infinite one-dimensional array of lumped elements, which are

Transmission line 
            Z0

Port A Port B
C

L

C

L

C

L

C

L
(a) (b)

CΔz

LΔz
+

_

z

I(z)

V(z) GΔzRΔz

I(z) I(z+Δz)

+

_V(z)
+

_V(z+Δz)

Δz

(c) (d)

Δz

Figure 3.1: Transmission line circuit diagram. (a) Transmission line symbol: a two-port
network with impedance Z0. (b) Lumped element circuit model of lossless TL: an infinite
network with series inductance and shunt capacitance. (c) Voltage and current definition in
the TL. (d) Voltage and current defined within a unit cell for a lossy TL. V (z) is the voltage
applied on unit cell at z and I(z) is the current through the same cell.

idealized electrical components, with unit cells size ∆z → 0, series inductance per unit

length L, with series resistance per unit length R, and shunt capacitance per unit length

C in parallel with shunt conductance per unit length G, as shown in Fig. 3.1(b,d) [72].

Applying Kichhoff’s laws to the circuit in Fig 3.1(d), we get:

V (z)− V (z + ∆z) = I(z)(R∆z + jωL∆z) (3.1)

I(z)− I(z + ∆z) = V (z + ∆z)(G∆z + jωC∆z). (3.2)

Here j is used as the imaginary unit instead of i to avoid any confusion between the current

i and
√
−1, which is a engineering convention and will be used for the rest of this thesis.

Dividing both sides by ∆z and taking the limit of ∆z → 0, we get:

∂V

∂z
= −I(R + jωL) (3.3)

∂I

∂z
= −V (G+ jωC). (3.4)

The above two equations can be solved simultaneously to get wave equations for V (z) and
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I(z):

d2V (z)

dz2
= γ2V (z) (3.5)

d2I(z)

dz2
= γ2I(z), (3.6)

where

γ =
√

(R + jωL)(G+ jωC) (3.7)

is the complex propagation constant. The traveling wave solutions to Eqs. (3.5)-(3.6) are:

V (z) = V +
0 e
−γz + V −0 e

γz (3.8)

I(z) = I+
0 e
−γz + I−0 e

γz. (3.9)

Here, the negative exponential term indicates a wave traveling in the positive-z direction

while the positive exponential term is the wave traveling in the negative-z direction. Applying

Eqs. (3.8)-(3.9) to Eqs. (3.3)-(3.4), we get:

I(z) =
γ

R + jωL

(
V +

0 e
−γz − V −0 eγz

)
. (3.10)

We can relate the voltages and currents in the traveling waves by the characteristic impedance

V +
0

I+
0

=
−V −0
I−0

= Z0, (3.11)

where Z0 is defined as:

Z0 =

√
R + jωL

G+ jωC
. (3.12)

Thus, for an ideal lossless TL with R = G = 0, we have:

Z0 =

√
L

C
. (3.13)
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The typical superconducting TL that would be used in cQED has rather small losses, in

which case Eq. (3.13) is a good approximation.

Following Eq. (3.7), we have1

γ = α + jβ, (3.14)

and for ideal case

α = 0 (3.15)

β = ω
√
LC, (3.16)

where β ∝ ω gives a linear dispersion. This also gives us the phase velocity and group

velocity of:

vp =
ω

β
=

1√
LC

(3.17)

vg =
∂ω

∂β
=

1√
LC

. (3.18)

Both velocities are positive and identical, indicating that a lossless TL will have a linear

dispersion relation. In the language of metamaterials discussed in the previous chapter, this

would be described as a right-handed medium.

3.2 Terminated transmission line

Using a coplanar wave-guide (CPW) type of TL to form a circuit cavity requires knowledge of

how the standing wave is distributed inside the TL. Here we consider the signal distribution

for a TL with length l terminated with a load impedance Zl at one end, as shown in Fig. 3.2.

Following Eq. (3.8) and (3.9), we will choose to make our origin at the right end z = 0 so

that both exponential terms associated with V +
0 , I+

0 and V −0 , I−0 are equal to 1 there. First,

1For the typical convention in Physics, this would be k, which is the magnitude of wave vector ~k.
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Figure 3.2: A transmission line terminated in a load impedance Zl.

we consider a lossless case, with I+
0 = V +

0 /Z0 and I−0 = V −0 /Z0, we have:

Z(0) =
V +

0 + V −0
V +

0 − V −0
Z0 = Zl. (3.19)

This expression can be rearranged as follows:

V −0 =
Zl − Z0

Zl + Z0

V +
0 . (3.20)

Normally, the ratio of the amplitude of the reflected voltage wave to the amplitude of the

incident wave is defined as the reflection coefficient, Γ [72]:

Γ =
V −0
V +

0

=
Zl − Z0

Zl + Z0

. (3.21)

In the limit of Zl → ∞, which corresponds to an open-end load, Γ = 1, while for Zl → 0,

which corresponds to a short-end load, Γ = −1. Following the same method, we can easily

prove that the current reflection coefficient is the same as the voltage reflection coefficient,

thus the voltage and current at any point along the length of the TL can be:

V (z) = V +
0

(
e−jβz + Γejβz

)
(3.22)

I(z) =
V +

0

Z0

(
e−jβz − Γejβz

)
, (3.23)
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where the input end of the TL is at z = −l. Thus, we can express the input impedance as:

Zin =
V−l
I−l

=
1 + Γe−2jβl

1− Γe−2jβl
Z0. (3.24)

Alternatively, we can use the definition of Γ from Eq. (3.21) in Eq. (3.24) to obtain [72]:

Zin = Z0
Zl + jZ0 tan (βl)

Z0 + jZl tan (βl)
. (3.25)

If the loss factor for the TL α is not negligible, it is straightforward to show that [72]:

Zin = Z0
Zl + Z0 tanh (γl)

Z0 + Zl tanh (γl)
. (3.26)

3.3 Half-wave TL resonator

Eq. (3.25) is very important for understaning TL resonator and I’m going to discuss it in

this section. The most typical one-dimensional TL resonators have boundary conditions so

that the fundamental resonance is either a half-wavelength or quarter-wavelength standing

wave pattern for the voltage and current. The half-wave resonator is made by adding small

coupling capacitors on both ends to the environment to create big load impedance. The

impedance is so large that it is a reasonable approximation to treat the input and load

impedances as open circuits. This is called open-ended boundary condition. To simplify

the calculation, we can treat load impedance as infinitely large, Zl →∞. The quarter-wave

resonator is formed by shorting one end of TL to the ground, making the load-impedance

at that side equal to zero, Zl → 0, while the other end is coupled to the external circuitry

through a coupling capacitor. For the remainder of this discussion, we will focus on half-wave

resonators, but the physics of quarter-wave resonators is quite similar.
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C L R

Figure 3.3: Parallel LCR circuit diagram

3.3.1 Parallel LCR resonator

Near resonance, a TL resonator can be modeled as a parallel LCR resonator formed from a

lumped-element inductor, capacitor, and resistor [72, 73]. Here, we will briefly review the

properties of a simple LCR resonator. The impedance of a parallel LCR circuit is given by:

Zin =

(
1

jωL
+ jωC +

1

R

)−1

. (3.27)

The quality factor Q is defined as the ratio of the energy stored in the LCR circuit to the

energy dissipated by the resistor R per each cycle:

Q =
Estored
Eloss

. (3.28)

Following Ref. [72], it is straightforward to show that for a parallel LCR circuit, the quality

factor can be expressed by:

Q = ω0RC, (3.29)

where ω0 is the resonance frequency defined by

ω0 = 1/
√
LC. (3.30)

Alternatively, the quality factor can be expressed as

Q =
R

Z0

. (3.31)
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Near resonance, ω = ω0 + ∆ω, we can rewrite Eq. (3.27) by:

Zin ≈
R

1 + 2j∆ωRC
=

R

1 + 2jQ∆ω/ω0

. (3.32)

3.3.2 TL half-wave resonator

Z0, l

Figure 3.4: Circuit schematic of a TL half-wave resonator with external power source.

Now we will return to the TL half-wave resonator, and for now we will allow for the possi-

bility of non-zero loss in the TL. As described previously, if we apply open-ended boundary

conditions to a TL, it will form a half-wave resonator. In this case, from Eq. (3.21), we have

Zl →∞, so Γ = 1 , also Eq. (3.26) would become:

Zin = Z0
1

tanh (γl)
, (3.33)

which can be rewritten as [72]:

Zin = Z0 coth [(α + jβ) l] = Z0
1 + j tan (βl) tanh (αl)

tanh (αl) + j tan (βl)
. (3.34)

At the fundamental half-wave resonance, we have: βl = π, since β = 2π/λ and l = λ/2.

Following the treatment of a parallel LCR resonator in Sec. 3.3 and the defintion of β

[Eqs. (3.16)-(3.17)], we have

βl =
ωl

vp
=

(ω0 + ∆ω) l

vp
= π +

π∆ω

ω0

. (3.35)
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The tan(βl) term in Eq. 3.34 can be expanded for small ∆ω as:

tan (βl) = tan

(
∆ωπ

ω0

)
≈ ∆ωπ

ω0

. (3.36)

For small loss α, we can also approximate tanh ≈ αl. By neglecting αl∆ω/ω0, i.e., the

product of two small terms, Eq. (3.34) becomes [74]

Zin ≈
Z0

αl + 2j π∆ω
2ω0

. (3.37)

Based on the similarity between Eq. 3.37 and the impedance of a parallel LCR resonator

[Eq. (3.32)], we can use a parallel LCR resonator to approximate a half-wave TL resonator

near resonance as follows [74]:

R =
Z0

αl
(3.38)

C =
π

2ω0Z0

(3.39)

L =
1

ω2
0C

, (3.40)

and

Q = ω0RC =
π

2αl
=

β

2α
. (3.41)

For a TL resonator, in addition to the fundamental mode, we can also consider higher

harmonic resonances, where βl = (n + 1)π, corresponding to ωn = nω0. Thus, for higher

order resonances, near resonance, Eq. (3.35) and (3.36) become:

βl = nπ +
π∆ω

ω0

(3.42)

tan (βl) ≈ nπ∆ω

ωn
. (3.43)



20

Eq. (3.37) now become [74]:

Zin,n =
Z0

αl + 2j
(
nπ
2

) (
∆ωn
ωn

) . (3.44)

Continuing the correspondence of mode n of an open-ended TL resonator with the equivalent

parallel LCR resonator gives [74]:

Rn =
Z0

αl
(3.45)

Cn =
π

2ωnZ0

=
π

2Z0ω0

(3.46)

Ln =
1

ω2
nC

=
2Z0

πn2ω0

(3.47)

Qn = ω0RC =
nπ

2αl
. (3.48)

It is interesting to note that for the equivalent LCR model, the characteristic impedance is

Zn =

√
Ln
Cn

=
2Z0

nπ
, (3.49)

which is no longer simply Z0 for each mode, as is the case for the TL resonator [74].

3.3.3 Quality factor

Using the LCR model for TL resonances allows for a straightforward calculation of internal

and coupling losses. Fig. 3.5(a) shows the circuit model of a parallel LCR circuit with

coupling capacitors Cc to the input circuitry and a load impedance [8, 74]. The loading

from the external resistor and capacitor will change the quality factor and the resonance

frequency. As shown in Fig. 2.6(b), the Norton equivalent circuits for the input and output
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R0 C L R
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(a) (b)

CNE
RNE

Figure 3.5: Diagram of (a) a loaded parallel LCR resonator circuit and (b) its Norton
equivalent circuit.

circuitry can be written in the following way [8, 74]:

RNE =
1 + ω2

nC
2
cR

2
0

ω2
nC

2
cR0

(3.50)

CNE =
Cc

1 + ω2
nC

2
cR

2
0

. (3.51)

Thus, the resulting circuit in Fig. 2.6(b) is a new parallel LCR circuit with effective Ceff =

2CNE +C and R−1
eff = 2/R−1

NE +R−1. The new circuit will have a lower resonance frequency,

ω∗n, due to the higher effective capacitance and lower quality factor due to the lower effective

resistance based on Eq. (3.30) and (3.31) [8]:

ω∗n =
1√

L (C + 2CNE)
(3.52)

Qext,n = ω∗n
C + 2CNE

1/R + 2/RNE

(3.53)

In the limit where Cc � C, the shift of the loaded resonance frequency ω∗n is negligible. So

the loaded resonance frequency ω∗n doesn’t shift much:

ω∗n ≈ ωn, (3.54)
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and the internal quality factor, which is the inverse of the loss due to R, is still:

Qint,n = ωnRCn =
nπ

2αl
, (3.55)

while the combined external quality factor which is the inverse of the loss due to the two

external resistors RNE coupled through Cc is [74]:

Qext,n = ωnRNECn ×
1

2
≈ nπ

4

1

ω2
nR0Z0C2

c

. (3.56)

With linear dispersion relation, ωn = nω0, we have 1/Qext,n ∝ n. Thus, the coupling loss for

a continuous TL half-wave resonator is linearly dependent on the mode number n. With the

coupling loss determined, we can calculate the power in the resonator for a given external

drive power [75, 76], which is very important in cQED. Since the total loss is the sum of

both external loss and internal loss, the total Q should have the form of:

1

Q
=

1

Qint

+
1

Qext

. (3.57)

The external quality factor is often noted as the “coupling quality factor”, Qc, and the

internal quality factor is often written as Qi.

3.3.4 Coplanar waveguide

The previous discussions apply to all types of TL. In cQED, the CPW type of transmission

line is widely used. The CPW layout is a straightforward method for producing a transmis-

sion line with a single metallization layer on a dielectric substrate [72]. It consists of a single

conducting trace in the center with a pair of ground planes on either side [77–79]. Fig. 3.6

shows the geometry of a conventional CPW.

To conclude, in this chapter, I have discussed the basic knowledge and properties, like

the dispersion β(ω) and characteristic impedance Z0, of conventional transmission lines and
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Figure 3.6: CPW geometry: (a) Top view of a CPW with center conductor width w and slot
width s; (b) Side view of a CPW with film thickness of t on top a substrate with thickness
of h.

properties of resonators like the coupling and internal quality factors.
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Chapter 4

Left-handed transmission lines

The realization of left-handed materials in one dimension as left-handed transmission lines

(LHTL) allows for the generation of novel dispersion relations in a system that is compatible

with typical cQED layouts for coupling to qubits [3]. The LHTL supports EM waves with

opposite propagation diretions for phase velocity and group velocity. The phenomenon of

antiparallel phase and group velocity, or “backward waves” [80] has been known for some

time, but the high intrinsic losses inherent in initial systems exhibiting these properties [81]

limited the potential applications. In the early 21st century, researchers revisited LHTLs in

a variety of contexts, including the development of novel microwave electronic devices [81–

84]. The previous chapter in this thesis was about some well-know concepts of conventional

transmission line and TL resonators. Now let’s shift our focus to the exciting and interesting

left-handed transmission line area.

4.1 LHTL: circuit model

It can be proved that a distributed LC network can be used to model the permeability and

permittivity of a particular material with L/m = µ (H/m) and C/m = ε (C/m) [82, 85]. The

discrete TL discussed in the previous chapter can be viewed as such a model of a 1D material.

When Veselago originally proposed the concept of a negative index of refraction [28], which is
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equivalent to the phase velocity being pointed in the opposite direction of group velocity, he

showed that a material with simultaneously negative permittivity and permeability will fulfill

the requirements [28]. Thus, there have been efforts to design LC networks to build such

a left-handed material [41]. While it is unphysical for an individual inductor or capacitor

to take on negative values, in a discrete TL, it is possible to produce the conditions for

achieving left-handedness by swapping the positions of the inductors and capacitors [41, 43].

This type of design is essentially a series high-pass filter network [80, 81]. Although no

naturally occurring material with left-handed properties has been discovered, we can build

a left-handed TL using metamaterials composed of discrete, lumped-element components.

Furthermore, we can fabricate such devices using superconducting traces to minimize the

internal losses.

CL CL

LL

CL

LL

CL

LL

CL

LL

Δz

CL

LLVm
Vm+1

Im Im+1
+ +

- -

(a) (b)

LL

m

Figure 4.1: LHTL circuit model: (a) array of series capacitors CL with shunt inductors LL
to ground; (b) definition of current and voltage supported by the LHTL at cell m.

Fig 4.1(a) shows a lossless left-handed transmission line (LHTL) circuit diagram, which

is basically formed by swapping the L and C in the diagram of Fig. 3.1(b). The CL (LL)

here is the capacitance (inductance) per unit cell which has an actual physical length of ∆z.

This means the LHTL is a discrete transmission line, with finite number of cells. In order to

study the transmission properties of a LHTL, we can apply Kirchhoff’s Law to the circuit
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schematic in Fig. 4.1(b) to obtain:

Vm − Vm+1 = Im

(
1

jωCL

)
(4.1)

Im−1 − Im = Vm

(
1

jωLL

)
(4.2)

Vm−1 − Vm = Im−1

(
1

jωCL

)
(4.3)

Im − Im+1 = Vm+1

(
1

jωLL

)
. (4.4)

We can use the admittance of the inductor Y = 1/jωLL and impedance of the capacitor

Z = 1/jωCL to rewrite Eqs. (4.1)-(4.4) to obtain:

Vm[2 + ZY ] =Vm−1 + Vm+1 (4.5)

Im[2 + ZY ] =Im−1 + Im+1. (4.6)

We assume solutions for the wave propagating through the LHTL at cell number m with the

following form:

Vm =V +
0 e
−jβm∆z + V −0 e

jβm∆z (4.7)

Im =I+
0 e
−jβm∆z + I−0 e

jβm∆z, (4.8)

where ∆z is the unit cell length and β = 2π/λ is the magnitude of wavenumber. Using

Eqs. (4.5)-(4.8), we arrive at:

[V +
0 e
−jβm∆z + V −0 e

jβm∆z][2 cos (β∆z)− (2 + ZY )] = 0. (4.9)

For this expression to be true in general, the term in the second set of square brackets must
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always be zero, which leads to the following condition:

2 cos (β∆z) = (2 + ZY ), (4.10)

which provides a relationship between β∆z and ZY . Using standard trigonometric relation-

ships combined with Eq. (4.10) leads to the following dispersion relation for an LHTL:

ωLHTL =
1

2
√
LLCL

1

| sin
(
β∆z

2

)
|
. (4.11)

From Eq. (4.11), we can see that ω is a decreasing function of β. Since larger β means

shorter wave-length, the largest possible value of β∆x is π, corresponding to a wavelength

of two unit cells; shorter wavelengths are unable to propagate in the LHTL. Thus, this type

of discrete transmission line will have an infrared cut-off frequency, corresponding to the

shortest wavelength:

ωIR =
1

2
√
LLCL

. (4.12)

By substituting Eq. (4.7) into Eq. (4.1) and solving for im, one can then compare the result

with Eq. (4.8) to obtain the following expressions for I+
0 and I−0 :

I+
0 = 2je−jβ∆z/2 sin

(
β∆z

2

)
V +

0

Z
(4.13)

I−0 = −2jejβ∆z/2 sin

(
β∆z

2

)
V −0
Z
. (4.14)

Eq. (4.10) can be rewritten as:

2j sin

(
β∆z

2

)
=
√
ZY , (4.15)
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which can be substituted into Eqs. (4.13)-(4.14) to yield:

I+
0 = e−jβ∆z/2V

+
0

Z0

(4.16)

I−0 = −ejβ∆z/2V
−

0

Z0

, (4.17)

with

Z0 =

√
LL
CL

, (4.18)

which is now the characteristic impedance of the LHTL. Combining Eqs. (4.16)-(4.17)with

Eq. (4.8), the current through unit cell m can then be rewritten as:

Im =
V +

0

Z0

e−jβ(m+ 1
2

)∆z − V −0
Z0

ejβ(m+ 1
2

)∆z. (4.19)

LR

CR

LR

CR

LR

CR

LR

CR

Δz

Figure 4.2: Circuit diagram of discrete right-handed transmission.

Although the treatment in Eqs. (4.1)-(4.10) was described in terms of a LHTL, this can

be easily extended to treat a discrete right-handed transmission line RHTL as well. For

example, a RHTL in Fig. 4.2 with Z = jωL and Y = jωC has the dispersion of:

ωRHTL =
2√
LRCR

sin

(
β∆z

2

)
. (4.20)

For small β∆z, this becomes ωRHTL ≈ β∆z/
√
LRCR. With continuum limit, ∆z → 0, and

the definitions of L = LR/∆z and C = CR/∆z, it is just β = ω
√
LC. Similar to the LHTL,

the maximum allowed value of β∆z is π, corresponding to a wavelength of 2∆z, but this



29

LHTL RHTL

(a) (b)

Figure 4.3: Dispersion relation of LHTL and discrete RHTL. (a) A LHTL dispersion with
ωIR/2π=6 GHz. Due to its left-handed nature, β is negative which will be discussed in
the next section. The dispersion is divergent at β = 0. (b) A discrete RHTL with
ωUV /2π=25 GHz. At low frequency, the dispersion is close to linear which fits the con-
tinuous TL dispersion, as described in the previous chapter.

now occurs at high frequencies, and is thus an ultraviolet cutoff::

ωUV =
2√
LC

. (4.21)

4.2 Continuum limit of discrete LHTL

Although the LHTL can only be realized using discrete metamaterial, to understand such a

line in the continuum limit is still important.

Fig. 4.4 shows a circuit diagram of a LHTL in continuous limit. Following the same
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RΔz

I(z) I(z+Δz)

+

_V(z)

+

_V(z+Δz)

C'L
Δz
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Figure 4.4: Voltage and current defined at positon z in imagined continuous LHTL unit cell
diagram with times-unit-length parameters of CL

′ (F ·m) and LL
′ (h ·m). For simplicity, the

loss only has series component, R (Ω/m).

analysis method in Sec. 3.1 for the continuous right-handed TL, we have:

Vz − Vz+∆z = Iz

(
∆z

jωCL
′ +R∆z

)
(4.22)

(Iz − Iz+∆z)
jωLL

′

∆z
= Vz+∆z, (4.23)

which in the limit of ∆z → 0 become:

∂V

∂z
= −

(
R +

1

jωCL
′

)
I (4.24)

∂I

∂z
= − 1

jωLL
′V, (4.25)

and then can give:

∂2V

∂z2
=

[
−
(
R +

1

jωCL
′

)(
− 1

jωLL
′

)]
V (4.26)

∂2I

∂z2
=

[
−
(
R +

1

jωCL
′

)(
− 1

jωLL
′

)]
I. (4.27)
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Similarly to Eqs. (3.5)-(3.6) in Sec.3.1, Eqs. (4.26)-(4.27) have solutions of:

V = V +
0 e
−γz + V −0 e

γz (4.28)

I = I+
0 e
−γz + I−0 e

γz (4.29)

γ = ±
√

(
1

jωLL
′ )(R +

1

jωCL
′ ), (4.30)

with characteristic impedance of

Z0 =

√√√√R + 1
jωCL

′

1
jωLL

′
. (4.31)

In a lossless case, it is just

Z0 =

√
LL
′

CL
′ . (4.32)

Following Eq. (4.30), the absolute value of propagation constant γ can be rewrite as:

|γ| =

√
R

jωLL
′ −

1

ω2LL
′CL

′ =
j

ω
√
LL
′CL

′

√
jRωCL

′ + 1. (4.33)

When R is small, it becomes:

|γ| ≈ j

ω
√
LL
′CL

′

(
1 +

1

2
jRωCL

′
)

(4.34)

= −1

2

R

Z0

+ j
1

ω
√
LL
′CL

′
. (4.35)

The real part of γ, which is α, is the loss so it can’t be negative. Thus, we should have

γ =
R

2
− j 1

ω
√
LL
′CL

′
, (4.36)
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and

α =
R

2
(4.37)

β = − 1

ω
√
LL
′CL

′
. (4.38)

Eq. (4.38) suggests that Eq. (4.11) should take the form of:

ωLHTL = − 1√
LLCL

1

2 sin
(
β∆z

2

) . (4.39)

In the lossless case with α = 0, based on Eq. (4.38), β is negative. The phase velocity and

group velocity can be found as:

vp =
ω

β
= −ω2

√
LL
′CL

′ (4.40)

vg =
∂ω

∂β
= ω2

√
LL
′CL

′. (4.41)

They have the same magnitude and are both frequency dependent. The sign difference indi-

cates they have different directions, which proves such a line is indeed left-handed. Similar

treatment and analysis can be found in Refs. [43, 86].

4.3 Accounting for stray reactance in LHTL

For any practical metamaterial, the individual lumped elements will always have parasitic

stray reactances that affect the behavior of the circuit. That means the inductor has its own

parallel capacitance and the capacitor has its own series inductance [43, 83]. Thus, when

we account for these stray reactances, our circuit becomes a composite left-handed/right-

handed (LHRH) transmission line shown in Fig. 4.5. The unit cell series impedance is

Z = jωLR + 1/jωCL and the unit cell shunt admittance is Y = jωCR + 1/jωLL. Define

the inductor’s self-resonance frequency and capacitor’s self-resonance frequency as ωL =
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Δz

CL

LLCR

LR

Figure 4.5: The circuit diagram of a LHRH transmission line, which is the LHTL with stray
reactances included.

1/
√
LLCR and ωC = 1/

√
CLLR, respectively. The earlier derivation for a simple LHTL can

be easily extended for an LHRH with these new composite expressions for Z and Y so that

Eq. (4.10) can be used to derive the dispersion relation for an LHRH:

β(ω) =
1

∆z
cos−1

[
1− 1

2

(
ωLR −

1

ωCL

)(
ωCR −

1

ωLL

)]
. (4.42)

We observe that this expression has solutions for both negative and positive values of β and

we plot these in Fig. 4.6.

From Fig. 4.6, we can see that the LHRH dispersion has two branches: there is a left-

handed branch at low frequency and is approaches the dispersion relation of a pure LHTL

near ωIR. For small, negative wavenumber, rather than diverging, as would be the case for

an ideal LHTL with no stray reactance, the LHRH dispersion intersects the β = 0 line at

the two self-resonance frequencies: min(ωL, ωC). Between the two self resonance frequencies,

there is a gap with no propagating solutions, then a branch with right-handed dispersion

begins at the larger of the two self-resonance frequencies, max(ωL, ωC). For even higher

frequencies, there will eventually be an ultraviolet cutoff due to the discrete nature of the

LHRH. The characteristic impedance of an LHRH will also be given by
√
Z/Y , but instead
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Left-handed branch

Right-handed
 branch

Ideal left-handed 

Figure 4.6: The dispersion relation of LHRH transmission line compared with pure LHTL
dispersion. The ωIR/2π is designed to be 6 GHz. The ωC/2π and ωL/2π are chosen to be
40 GHz and 50 GHz, respectively.

of being
√
LL/CL for the ideal LHTL case, this becomes:

Z0 =

√
LL
CL

√
1− ω2LRCL
1− ω2CRLL

(4.43)

=

√
LL
CL

√
1− ω2/ω2

L

1− ω2/ω2
C

. (4.44)

Although this characterstic impedance is frequency dependent, for typical parameters of the

lumped elements for our metamaterials that will be described in the subsequent chapters,

this will not deviate significantly from
√
LL/CL over most of the frequency range of our

experiments.

To conclude, in this chapter, I have discussed the basic knowledge and properties of the

LHTL. The dispersion ω(β) of LHTL is a falling function of β, which results in vp and vg

having different directions. The dispersion also makes high density of modes possible near

low frequency end of LHTL spectrum. I’ve also discussed the stray reactance of the LHTL.
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Chapter 5

Left-handed transmission line

resonator

We discussed in Sec. 3.3 about the application of open-ended boundary condition using small

coupling capacitors on either end of a transmission line for creating a resonant cavity with

standing wave modes. In this chapter, we will apply a similar treatment to form standing-

wave resonances with an LHTL. Since the LHTL is is always formed from a metamaterial, a

resonator with fixed length l will have a total number of cells N . We will follow the notation

from the previous chapter, with a shunt inductance LL, series capacitance CL, unit cell size

∆z, and coupling capacitances Cc at either end of the LHTL. We will focus on layouts with

symmetric coupling between the input and output, but it is straightforward to extend our

treatment to situations with asymmetric coupling.

5.1 Ideal LHTL resonator

First, we will consider an ideal LHTL, which does not have any stray reactances. The

dispersion relation is given by Eq. (4.39). For simplicity, let’s fold the dispersion around

the wavenumber axis so that the plot will fall in the first quadrant, as shown in Fig. 5.1

with ωLHTL = 1/2
√
LLCL sin (β∆z/2). As shown in Sec. 3.3 for a RHTL, the open-ended
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boundary condition corresponds to a half-wave fundamental resonance with the resonance

condition of βl = nπ, n = 0, 1, 2, . . . , N . Using the fact that l = N∆z, we obtain the

following relationship:

β∆z =
nπ

N
. (5.1)

From Fig. 5.1 we can see that the dispersion diverges at high frequency, there is no n = 0

mode, which means n 6= 0. Also, mode with n = N has infinite coupling quality factor

according to Sec. 5.5, which will be discussed later, meaning the resonance is not measurable,

thus n 6= N . Thus for a LHTL resonator of N unit cells, we shall have N − 1 different

resonance modes. Due to the left-handed nature of the dispersion, the small number mode,

which correspond to long wavelengths, are at high frequency. At the same time, the high−n

modes with short wavelengths correspond to the lowest frequencies. Near the infrared cut-

(Mode number) x βΔz/Nπ

ω
/2
π 

(G
H

z)

Figure 5.1: Dispersion relation of a LHTL resonator with normalized mode number. The
blue points here correspond to the resonant modes where β∆z = nπ/N , while the black line
is the LHTL dispersion relation from Eq. (4.11) from Chap. 4. The parameters are chosen
as N = 42, CL = 250 fF and LL = 0.625 nH.

off, the mode spacing is very small due to the flatness of the band there. From the example

plot in Fig. 5.1, the lowest five resonances fall within a 100 MHz range. That means in a
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very narrow frequency range, we can have multiple orthogonal resonances.

This potential for generating a high density of modes in a superconducting structure

that is compatible with cQED provides a new pathway for generating novel mode spectra

for coupling to qubits. As discussed in Chap. 1, we can use a conventional RHTL resonator,

perhaps patterned with a CPW layout, to achieve high density of modes. However, due to

the linear dispersion, in order to make the mode spacing in 10 MHz range, the fundamental

mode has to be 10 MHz or less. This results in an ultra-long resonator [22], which can

be impossible to fit on a typical 8 × 8 mm2 cQED chip size. This introduces challenges

with processing and cooling to mK temperatures, as well as the potential for low-frequency

package modes. In addition, such a cavity will have resonance modes in the entire qubit

frequency range so the qubit will always be coupled to the cavity. This could make qubit

readout challenging and the relaxation will be strongly impacted by the Purcell effect due to

coupling to all of the various modes [87]. An alternate approach involves a multimode scheme

with multiple CPW resonators coupled together [25], but this still requires a rather large

area. However, a LHTL resonator naturally has a ultra-high density of modes at frequencies

near the infrared cut-off for the qubit to couple to. It is straightforward to design the unit

cell parameters for a particular ωIR, mode spacing, and size. In addition, the qubit can

always be prepared at a frequency far below the cut-off without strongly interacting with

the cavity. All of these potential advantages drive us to pursue the realization of LHTL

cavities.

5.2 LHRH transmission line resonator

As described in the previous chapter, an LHTL cavity built by actual circuit elements will

always have parasitic reactances, which may sound like undesirable properties. But in fact,

such stray reactances could actually be beneficial for making the mode spacing even smaller.

As shown in Fig. 5.2, due to the self-resonance frequencies of capacitors and(or) inductors,
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the dispersion ω(β) gets pushed down at high frequency, which reduces the mode spacing

between all the modes since the same number of modes will now be compressed into a

smaller frequency span. Meanwhile, the structure can now support an n = 0 mode: At the

two self-resonance frequencies, the resonance will have infinite wavelength, which leads to

essentially no series loss since all the cells will have the same potential and no current will

be flowing through the cell which eliminates dissipation [44]. We call the this type of general

resonator the Left-handed/Right-handed (LHRH) TL resonator. Because our microwave
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Figure 5.2: LHRH transmission line resonator dispersion plotted in solid line from Eq. (4.42)
compared with a pure LHTL dispersion plotted in dashed line. The LHRH resonator has
two braches: The bottom (black line) is the left-handed branch and the top (red line) is
the right-handed branch. The parameters are chosen as ωIR/2π = 6.36 GHz and the two
self-resonance frequencies are 40 GHz and 50 GHz. The LH branch agrees well with a pure
LHTL dispersion which has the same ωIR at the low frequency end. The LHRH resonator has
42 cells and the blue dots are the resonance frequencies of all 42 modes including the n = 0
mode on the LH branch of the dispersion. is a simulated transmission |S21(f)| spectrum of
the LHRH resonator simulated by AWR near the low frequency end.

electronics hardware and cabling typically operates in the 1-20 GHz range, the dispersion

relation of a practical LHRH resonator that we would fabricate will be dominated by the
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left-handed branch. Similarly to an ideal LHTL resonator, in the left-handed branch, the

LHRH resonator shall have N different modes including the n = 0 mode. Thus, for certain

values of LL and CL, more cells will result in more modes and smaller mode spacing. We

can also increase the density further by intentionally adding stray reactance to drive the

high-frequency gap down to lower frequencies to compress the spectrum.

5.3 Terminated LHRH transmission line impedance

In order to develop a quantitative understanding of the properties of a lossless LHRH res-

onator, we consider such a circuit with a load impedance Zl at the output end and input

circuitry at the input end, as shown in Fig. 5.3.

CL

CR

LR

LL

CL

CR

LR

LL

CL

CR

LR

LL Zl

Iin

Vin

Il

Vl

0-N+1 -1-N

Figure 5.3: The circuit diagram of a lossless LHRH transmission line with load impedance
Zl on the right end. For calculational convenience, the loaded end is marked as m = 0. The
first cell counting from the input end of the metamaterial is the m = −N cell and the last
cell is m = −1 cell, which gives total number of cell as N .

Equations (4.7) and (4.19) give us the voltage and current in a given discrete TL as

functions of cell number m. To simplify the calculation, load impedance position will be

defined as the zeroth cell, m = 0, but not a unit cell in the metamaterial. The reflection

coefficient Γ is defined the same as in Eq. (3.21), which is V −0 /V
+

0 . Thus, we have the current

and voltage at m = 0:

V0 =V +
0 + ΓV +

0 (5.2)

I0 =
V +

0

Z0

e−jβ
∆z
2 − ΓV +

0

Z0

ejβ
∆z
2 , (5.3)
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from which we can compute the impedance at m = 0, Z0 = V0/I0:

Zm=0 = Z0
1 + Γ

e
−jβ∆z

2 − Γe
jβ∆z

2

. (5.4)

At cell 0, we require that Zm = Zl. Thus we have

Γ =
Zle

−jβ∆z
2 − Z0

Zle
jβ∆z

2 + Z0

. (5.5)

which corresponds to the limit Zl →∞, Γ has the form of:

ΓZl→∞ = e−jβ∆z, (5.6)

which, unlike the continuous TL resonator with open-ended boundary condition [72], is not

simply equal to one. With the reflection coefficient calculated, we can then calculate the

impedance from the input end, with the left end cell number being −N . Thus, based on

Eqs. (4.7-4.19) we have

V−N =V +
0 e

jβN∆z + ΓV +
0 e
−jβN∆z (5.7)

I−N =
V +

0

Z0

e−jβ(−N+ 1
2

)∆z − Γ
V +

0

Z0

ejβ(−N+ 1
2

)∆z, (5.8)

which yields:

Z−N = Z0
ejβN∆z + Γe−jβN∆z

e−jβ(−N+ 1
2

)∆z − Γejβ(−N+ 1
2

)∆z
. (5.9)

Eq. (5.9) is the input impedance of a metamaterial LHRH transmission line with impedance

Z0 [Eq. (4.44)] and wavenumber β∆z [Eq. (4.42)] loaded by an impedance ZL corresponding

to a reflection coeffeicient Γ [Eq. (5.5)]. It is important to note that this derivation is quite

general and can be easily extended to other types of discrete TL resonators with different

β∆z, Z0, and Γ.
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5.4 S21 parameter calculation

An important measurement quantity for characterizing a n−port microwave device is the

scattering parameter, or S parameter, matrix. In Fig. 5.4(a), we show the schematic for a

2-port network, with S parameters defined in terms of the power relationship of the outgoing

wave b1, b2 to the incoming wave a1, a2 [72, 88, 89]:

 b1

b2

 =

S11 S12

S21 S22

×
 a1

a2

 .
In the transmission line cavity setup, the S parameter, S21, characterizes the transmission

a1

b1 a2

b2

CL

CR

LR

LL

CL

CR

LR

LL

CL

CR

LR

LL V2

0-N+1 -1-N

Cc

R0

Zl
CcR0

Vg Zl Vin

Z-N
(b)

(a)

Linear Network

Figure 5.4: (a) The schematic of a general 2-port network. (b) The realization of the S21

measurement setup setup for a metamaterial transmission line resonator. The number of
cells is N , the input end load impedance and the output load impedance are both Zl for
symmetric coupling and are marked in blue dashed boxes. The total impedance of the LHTL
resonator looking from the left end is Z−N and is marked in red dashed box. The source
voltage is Vg. S21 represents the output voltage at port 2, V2, relative to the input voltage
at port 1, Vg.

through the TL resonator from the input to the output. When the load impedance is matched
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AWR
Eq. (5.15)

Figure 5.5: The plot of one mode of a 42-cell metamaterial resonator S21 calculated from
numerical model Eq. (5.15) compared with AWR simulation. The unit cell parameters are:
CL = 266 fF, LL = 0.6 nH, CR = 21.806 fF and LR = 0.595 nH. The values are picked based
on the discussion in Sec. 8.2.2 and the Sonnet simulation result of the stray reactances that
will be discussed in Chap. 8. The numerical result matches the simulation quite well.

to the source impedance at the input end, the S21 is simplified as [72]

S21 =
b2

a1

=
V −2
V +

1

. (5.10)

We can also express the input voltage V1 in terms of the source voltage Vg: With perfect

matching of the source impendance and the transmission line impedance, Z−N = Zl, we

should have: V1 = Vg/2, thus we have [90]

S21 =
2V −2
V +
g

. (5.11)

Fig. 5.4(b) shows a S21 measurement setup for a metamaterial transmission line with N unit

cells. Once we can calculate the voltage V2 across the load resistor, we can then calculate

S21 for an LHRH resonator using Eq. (5.11). First, we calculate the voltage at the input end

Vin:

Vin = Vg
Z−N

Zl + Z−N
. (5.12)
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We can also recall from Eq. (5.7) that Vin should equal to V +
0 e

jβN∆z + ΓV +
0 e
−jβN∆z, from

which we can solve for V +
0 :

V +
0 = Vin/[e

jβN∆z + ΓV +
0 e
−jβN∆z]. (5.13)

The next step is to calculate the voltage at the output end, which, according to Eq. (5.2),

should be V +
0 (1 + Γ). The voltage V2 across the load R0 is then given by:

V2 = V +
0 (1 + Γ)

R0

Zl
. (5.14)

Combining Eqs. (5.12)-(5.14), we obtain an analytic expression for S21 for an LHRH res-

onator:

S21 = 2
Z−N

Zl + Z−N

1 + Γ

[ejβN∆z + Γe−jβN∆z]

R0

Zl
. (5.15)

Since β is a function of ω, or f for f = ω/2π, Eq. (5.15) can be written as S21(f). Fig. 5.5

is the plot of Eq. (5.15) compared with AWR simulation of one mode showing quite good

agreement. All other modes show comparable agreement between Eq. (5.15) and the AWR

numerical simulations.

5.5 Resonator losses

Understanding loss mechanisms is a critical part of the design and characterization of any

resonant structure. Resonator losses can be divided into two broad categories: interal and

external or coupling losses [72]. In typical cQED structures, one of the dominant sources

of internal loss is dielectric loss at the substrate-metal and substrate-air interfaces [91–93].

Through careful materials processing, this loss can be as low as 10−6 [90], although 10−5

is more typical. The coupling loss is determined by the external dissipation coupled to the

resonator through the coupling capacitor. In Sec. 3.3, we have discussed the coupling loss

for a conventional continuous TL resonator. For a practical superconducting metamaterial
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resonator, we expect coupling losses to dominate at most of the frequency range that could

be measured based on numerical simulation results. Thus, we will be mainly focusing on

quantitative description of coupling losses for metamaterials here.

5.5.1 RHTL resonator coupling loss

First let’s look at the coupling loss for a discrete for a RHTL resonator, since this actually

has some key differences from a continuous RHTL resonator due to the different dispersion

relations:

ωTL = β
√
LC (5.16)

ωRHTL =
2√
LRCR

sin

(
β∆z

2

)
. (5.17)

Based on Eq. (3.56), the coupling loss for a continuous TL resonator is given by:

1

Qc

=
4ω2

nR0Z0C
2
c

nπ

where R0 is the source impedance. With the linear dispersion characteristic of a continuous

TL resonator, ωn = nω0, the loss increases linearly with mode number n. In order to

investigate the coupling quality factor of the discrete RHTL resonator, we have simulated

S21 for a 40-cell discrete RHTL resonator in AWR with no internal loss. By fitting each

resonance to a Lorentzian, we extract the resonance frequency f0 and the full-width at half

maximum (FWHM) ∆f . The total Q is given by Q = f0/∆f . Because the internal loss is

set to be zero, this Q is just the coupling quality factor. In Fig. 5.6 we compare plots of the

coupling loss for a continuous RHTL resonator computed with Eq. (3.56) and the simulated

values for a discrete RHTL resonator from AWR.

Fig. 5.6 shows that the coupling loss for the discrete RHTL resonator matches that for the

continuous case described by Eq. (3.56). However, starting around 5th mode, the coupling
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Continuous RHTL
 resonator Eq. (3.56)

AWR simulation
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Figure 5.6: Solid line is 1/Qc for a continuous RHTL resonator as described by Eq. (3.56).
The plot should of course be discrete but we have plotted it as a straight line so it’s more
obvious how the Qc would change with different mode number and how the discrete case is
different from the continuous case. The red dots are the 1/Qc values of different modes of
a 40-cell RHTL resonator extracted from AWR simulation. The parameters are chosen so
that the two cases have the same inductance and capacitance per length.

loss for the discrete RHTL resonator shows noticeable deviation from the linear dependence

on mode number. The coupling loss reaches a maximum around the 15th mode before

decreasing until the ultraviolet cutoff. In order to understand this surprising behavior, it

is difficult to extend the treatment of coupling loss for a continuous RHTL resonator from

Chap. 3 to the case of a discrete RHTL resonator. The method used there was to expand

the impedance of a terminated lossy TL around the resonance frequency and compare its

frequency dependence to that of an LCR resonator to map the TL resonator [Eq. (3.34)] to a

parallel LCR circuit [Eq. (3.32)]. Then the Norton equivalent circuit was used to transform

the capacitive coupling circuits to a parallel RC circuit [Eq. (3.50-3.51)]. The terminated

impedance as Eq. (5.9) with ZL → ∞ of the discrete RHTL is a lossless expression, and it

gives an infinite internal quality factor and the LCR mapping will fail. Even if the actual

coupling of the resonator takes the form of ZL = 1/jωnCc + R0, which makes Eq. (5.9) no
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longer lossless, it is still extremely difficult to expand Eq. (5.9) around ωn

Instead of studying the discrete RHTL resonator in the impedance perspective, inspired

by Ref. [75], we can treat it from the energy perspective. On resonance, with a certain input

voltage Vin, we can derive the total stored electric energy in the capacitors and the stored

magnetic energy in the inductors and compare that with the electric energy and magnetic

energy in a LC circuit with the same input voltage. This in principle give us the effective

capacitance C̃R and effective indutance L̃R for mapping the RHTL resonator to a loaded LC

resonant circuit. Based on Eq. (3.56), we should have:

Qc =
C̃R

2ωnC2
CR0

. (5.18)

For an RHTL resonator, based on the resonance condition of β∆z = nπ/N , we have:

ωn =
2 sin

(
nπ
2N

)
√
LRCR

=
2 sin

(
nπ
2N

)
Z0CR

. (5.19)

Combining Eqs. (5.18) and (5.19), we have:

Qc,RHTL =
Z0CRC̃R

4R0C2
c sin

(
nπ
2N

) . (5.20)

Now we derive an expression for Qc(C̃) for an RHTL resonator. The total electric energy

stored in the capacitors of an RHTL resonator takes the form of:

Ee,RHTL =
1

2

−1∑
N=−m

CR|Vm|2. (5.21)

When Cc is small, we can take the limit of ZL = (1/jωnCc +R0)→∞. Thus, with Eqs. (4.7),

(3.21) and (5.6), we have the voltage Vm,n of mode n at each unit cell m to ground as:

Vm,n = V +
0

(
e−j

mnπ
N + ej

(m−1)nπ
N

)
. (5.22)
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If we substitute Eq. (5.22) into Eq. (5.21), we obtain:

Ee,RHTL = CR(V +
0 )2N. (5.23)

At the same time, the electric energy stored in the equivalent LC resonator should be:

Ee,LC =
1

2
C̃R|V1|2. (5.24)

From Eq. (5.13), we have:

V1,n = V +
0

(
ejnπ + e−

jnπ
N e−jnπ

)
. (5.25)

So |V1,n|2 is:

|V1,n|2 = 4V 2
0 cos2

( nπ
2N

)
, (5.26)

which gives us the electric energy stored in the LC capacitor C̃R:

Ee,LC = 2C̃RV
2

0 cos2
( nπ

2N

)
. (5.27)

Equating Eqs. (5.23) and (5.27), we can obtain the equivalent LC circuit capacitance C̃R

for a discrete RHTL resonator:

C̃R,n = CR
N

2 cos2
(
nπ
2N

) . (5.28)

Plugging this result back into Eq. (5.20), we have the analytic expression of Qc for a discrete

RHTL resonator as:

Qc,RHTL,n =
C2
RZ0N

8C2
cR0 sin

(
nπ
2N

)
cos2

(
nπ
2N

) . (5.29)

If the RHTL has a characteristic impedance Z0 that matches the source impedance R0, the



48

1/QC from Eq. (5.30)

1/Qc from Eq. (5.15)

1/QC  from AWR

Figure 5.7: 1/Qc comparison for an LHTL resonator between AWR simulations and the
numerical calculation of both Eq. (5.15) and Eq. (5.29). The parameters for the RHTL are:
C = 250 fF, L = 0.625 nH, CC = 1 fF, N = 40.

coupling is then:

Qc,RHTL,n =
C2
RN

8C2
c sin

(
nπ
2N

)
cos2

(
nπ
2N

) . (5.30)

In Fig. 5.7 we compare this expression with the simulated Qc values for a discrete RHTL

resonator from AWR and the two approaches agree quite well.

The effective inductance L̃R can be found from 1/
√
L̃RC̃R = ωn as:

L̃R,n =
LR

2N tan2
(
nπ
2N

) . (5.31)

5.5.2 LHTL resonator coupling loss

Now that we have developed an approach for treating the coupling loss for a discrete RHTL

resonator, we will follow a similar treatment for an LHTL resonator. By studying the RHTL

case, it’s clear that the mapping of a discrete resonator to a LC circuit is still valid. Based

on the derivation for an RHTL in Eqs. (5.20)-(5.23), with the LHTL dispersion relation:

ωn =
1

2
√
LLCL sin

(
nπ
2N

) =
1

2Z0CL sin
(
nπ
2N

) ,
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then the coupling quality factor will be given by:

Qc,LHTL,n =
Z0CL sin

(
nπ
2N

)
C̃L

C2
cR0

. (5.32)

In order to calculate C̃L, we again calculate the stored electric energy in the LHTL resonator

on its nth resonance. Since all the capacitors are in series in an LHTL, while the cell voltage

Vm is defined as the voltage to ground, voltage across the capacitor in cell m is Vm−1 − Vm.

Thus, we have:

Ee,LHTL =
1

2

−1∑
m=−N

CL|Vm−1 − Vm|2. (5.33)

Based on Eq. (5.22), the result of the direct sum term is:

−1∑
m=−N

CL|Vm−1 − Vm|2 = 8N sin2
( nπ

2N

)
. (5.34)

Eq. (5.33) then becomes:

Ee,LHTL = 8NCL(V +
0 )2 sin2

( nπ
2N

)
. (5.35)

Equating this to the electric energy stored in the equivalent LC circuit given by Eq. (5.27)

allows us to solve for C̃L:

C̃L,n =
2N sin2

(
nπ
2N

)
cos2

(
nπ
2N

) CL. (5.36)

Upon substituting this expression for C̃L back into Eq. (5.32), we obtain:

Qc,LHTL,n =
2NZ0C

2
L sin3

(
nπ
2N

)
R0C2

c cos2
(
nπ
2N

) . (5.37)

Again, if the characteristic impedance Z0 matches the source impedance R0, the Qc is just:

Qc,LHTL,n =
2NC2

L sin3
(
nπ
2N

)
C2
c cos2

(
nπ
2N

) . (5.38)
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1/Qc from Eq. (5.38)

1/Qc from Eq. (5.15)

1/Qc  from AWR

Figure 5.8: 1/Qc comparison for an LHTL resonator between AWR simulations and the
numerical calculation of both Eq. (5.15) and Eq. (5.38). The parameters for the LHTL are:
CL = 250 fF, LL = 0.625 nH, Cc = 10 fF, N = 40. The first three small n modes are in
extremely high frequency range and the peaks are too wide due to large loss, finding and
fitting them are very difficult. Thus, they are not included here.

Eq. (5.38) indicates that the coupling Q is infinite if n = N , which makes n = N mode

undetectable and explains the reason for n 6= N . In Fig. 5.8 we show the 1/Qc comparison

for an LHTL resonator between an AWR simulation and the linewidth calculation based on

the expression for S21 from Eq. (5.15), and Eq. (5.38). Again, as with the discrete RHTL

resonator, all three approaches agree quite well. For completeness, the inductance L̃L for

the effective LC circuit is given by:

L̃L,n =
2LL cos2 nπ

2N

N
. (5.39)

5.5.3 LHRH resonator coupling loss

As discussed previously, the actual metamaterial LHTL always has stray reactances asso-

ciated with the lumped elements. Although the stray reactances typically generate only

modest changes in the dispersion in the low frequency range, it is not clear in advance how

much the stray reactances will affect the coupling loss. Analytically, the same method used

in the last section for mapping the LHRH resonator to a LC circuit is still valid. For the



51

LHRH, it will have contributions to Ee from both 1
2

∑
CL|(Vm−1 − Vm)|2 and 1

2

∑
CR|Vm|2.

With Eq. (5.27), (5.23) and (5.35), the equivalent capacitance can be derived as:

C̃LR =
2NCR + 8NCL sin2

(
nπ
2N

)
4 cos2

(
nπ
2N

) . (5.40)

The expression for ωn of LHRH resonator is quite complicated. By solving the dispersion

relation of Eq. (4.10) with β∆z = nπ/N , we get the resonance frequency as:

ωn =

√√√√√√√1

2

 1

CRLL
+

1

CLLR
+

4 sin2
(
nπ
2N

)
CRLR

−

√
−4CRLR

CLLL
+
(
−CR
CL
− LR

LL
+ 4 sin2

(
nπ
2N

))2

CRLR

.
(5.41)

Plugging Eq. (5.40)-(5.41) back to Eq. (5.18) gives the expression of coupling quality factor of

a LHRH resonator, but it is too long to be printed it here. Fig. 5.9(a) shows the numerically

calculated coupling loss compared with the coupling loss extracted from calculated S21. We

can see that they agree to each other very well.

Although the expression for the coupling quality factor of an LHRH resonator becomes

quite complex, Fig. 5.9(b) shows that the coupling loss for an LHRH only deviates from that

for an ideal LHTL resonator for the lowest few modes, which occur at the highest frequencies.

Thus, over much of the frequency range, the much simpler expression in Eq. (5.38) does a

reasonable job, even for an LHRH resonator.

To conclude, in this chapter, I have discussed the physics of the LHTL resonators,

including the dispersion relation, the transmission S21 calculation and coupling quality factor

Qc calculation. These calculations can also be extended to general discrete TL resonators

like RHTLs and LHRH transmission lines.
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(a)

(b)

Analaytic expression

Extracted from S21

Ideal LHTL resonator

LHRH resonator

Figure 5.9: LHRH resonator coupling loss for different modes. (a) Comparison of the analytic
approach derived from substituting Eq. (5.40)-(5.41) into Eq. (5.18) with the approach based
on extracting the linewidths from S21(f) using Eq. (5.15). (b) Coupling loss comparison
between a pure LHTL resonator and a LHRH resonator created by adding stray reactances
using the approach based on the linewidth extraction from the corresponding S21 expressions.
They are both extract from numerically calculated S21. The parameters are: C = 250 fF,
L = 0.625 nH, Cc = 1 fF, N = 40, LR = 0.033 nH and CR = 16.21 fF. For similar reasons
to Fig. 5.8, the first three small n modes are not included here.
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Chapter 6

Metamaterial resonator sample design

After the theoretical introduction in the previous chapters, we are now ready to design

the actual circuit layout and parameters. Our goal is to realize a dense spectrum using a

metamaterial resonator and eventually coupling a qubit to that spectrum. The first step is

to successfully make a working metamaterial resonator.

There are several fundamental constraints and conditions that need to be taken into

consideration. First, based on the dispersion relation of the LHTL (or LHRH line if we

count the stray reactances, which are expected to be small) shown in Fig. 5.2, we need

to pick a cut-off frequency. Because the flux-tunable transmon qubit that is commonly

used in our lab typically has a upper sweet spot in between 5-9 GHz (that will be further

discussed in Chap. 9), ωIR should be below this range. Also, due to the limitation from

the working frequency range of our High-electron-mobility transistor (HEMT) and room-

temperature amplifiers, ωIR should be above 2 GHz. Thus, aiming for a 5-7 GHz infrared

cut-off frequency is ideal. Second, we need to consider the unit cell size. As discussed

in Sec. 5.1, the number of resonances for the LHTL resonator is proportional to the total

number of cells. So we hope to have as many cells as possible. Additionally, the sample

holder that we are going to use has an opening window of 5× 5 mm2, which limits the size

of our chip. Besides, we want to keep the characteristic impedance which is approximately
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√
LL/CL to be 50 Ω.

6.1 Inductor design

Since metamaterial LHTL is basically repeated capacitors and inductors, let’s first focus on

the design of the inductor. An inductance of 0.625 nH and a capacitance of 250 fF are a

good fit for our requirements: the cut-off is around 6.37 GHz which is in between 5 and 7

GHz, and the characteristic impedance is just 50 Ω. We also want to achieve this inductance

in a small area in order to have more cells. Inspired by Ref. [47], we chose the meander-line

inductor. The dimension and parameters are shown in Fig. 6.1.

114 μm

2 μm

60 μm

3 μm 3 μm

Figure 6.1: Inductor gds file rotated counter-clockwised by 90 degrees.

We simulated this geometry in Sonnet and the inductance of this design is around 0.6 nH

which is very close to desired value. Sonnet also gives the self-resonance frequency of the

meander-line geometry to be around 68 GHz which is much higher than the cQED frequency

range. The meander-line shape is easy to fabricate and simulate, but it requires relatively

large areas to provide a certain value of inductance [94]. Other candidates include spiral

inductors and Josephson junctions [95]. The spiral inductor can provide large inductance

in a relatively small area [96], but it requires a triple-layer fabrication process, which is
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more complicated compared to a single-layer meander-line. The Josephson junction has a

nonlinear inductance of

LJ =
Φ0

2πIC

√
1−

(
I
IC

)2
,

where IC is the junction’s critical current [97], which will be discussed in detail in Chap. 9.

It also can provide a relatively large inductance. But the fabrication process is not easy to

control, especially to control the variations between different cells. Also, the junctions need

to be operated at low power otherwise the current can easily exceed the critical current at

resonance frequencies. Thus, meander-line inductor design is selected.

6.2 Capacitor design

Similarly to the inductor, we hope to achieve the desired capacitance using the smallest

possible area. We decided to use interdigitated capacitor. This kind of design is very

commonly used in cQED and we have a lot of experience of adopting it to the circuit layout.

Researchers have obtained very accurate expressions to estimate the capacitance [98]. The

designed geometry is shown in Fig. 6.2. Based on Sonnet and Q3D [99] simulations, this

geometry can provide around 250 fF of capacitance, very close to our target value. The

self-resonance frequency given by Sonnet is about 52 GHz, which is also much higher than

the cQED working frequency range and is below the self-resonance frequency of meader-line

inductor.

Another very promising route is to use a parallel-plate capacitor design. It can provide

larger capacitance per unit area than the interdigitated capacitor. However, it is a triple-

layer process and the dielectric materials like SiOx that are commonly used could be very

lossy, which will limit the internal quality factor.

Be making the actual metamaterial resonator, we have designed and tested a series of

lumped-element test oscillators fabricated using Al on Si with the same process and lumped-
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Figure 6.2: Capacitor gds file with dimensions

element parameters as in the design for metamaterials shown in Fig. 6.3(a,b). The test

oscillator chip consists of four lumped-element LC oscillators, each one capacitively coupled

to a CPW feedline. We were aiming for a lower ωIR when the test oscillators were designed,

so each one of them has a longer inductor than the meander-line in a unit cell of our metama-

terial layout presented in this chapter, but the capacitor has the same interdigitated finger

parameters as in the corresponding metamaterial line, although the capacitor is split in two

halves that are arranged in parallel on either side of the inductor. The total number of finger

pairs in the capacitor for oscillator number 1-4 is 29, 33, 37, or 41, respectively, thus allowing

us to study the variation in capacitance for different numbers of fingers [2].

1/
f 0

2 (1
/G

H
z2 )

(C)
0.016

0.014

0.012

0.010

0.008
30 35 40

Number of Pairs of Fingers

Figure 6.3: Optical micrographs of test oscillator chip as described in the text: (a) zoomed
out; (b) close-up of single oscillator; (c) Plot of 1/f 2

0 vs. number of finger pairs in capacitor
of each test oscillator along with linear fit [2].

By studying the dip type resonances in S21, we were able to extract the internal quality
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factors and resonance frequencies for all four of them. The 1/Qi is in the range of 10−5,

which is consistent with loss due to two-level systems at interfaces and surfaces in thin-

film superconducting circuits at low temperatures [100, 101], which will also be discussed in

Chap. 9. The linear fit of 1/f 2
0 plotted in Fig. 6.3(c) indicates that the meander-line has

an inductance of ∼0.7 nH if the capacitance per pair of fingers is 8.35 fF based on Q3D

simulation and theoretical calculation based on Ref. [98], which is slightly higher than our

Sonnet simulation discussed in Sec. 6.1. It could be because the capacitance estimation is

slightly off, or the Sonnet does not include kinetic inductance, which could effectively lower

the resonance frequency [2].

6.3 Metamaterial configuration and layout

3030 μm

786 μm

Inductor Capacitor
Coupling
Capacitor

Figure 6.4: LHL gds file with dimensions

Since our meander line inductor has a large horizontal length, if we place them all on

one side respect to the capacitors, they will need more space than the capacitor width

to avoid overlapping. Even if we make sure they are not touching each other, they still

could have strong cross-talk effect that the mutual inductance between the meander lines

arises which will change our mematmaterial’s transmission property. So, we decide to use a
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“staggered” configuration shown in Fig. 6.4 with the neighboring cells having the inductors

pointing to the opposite directions. In other words, the odd number of cells would have the

inductors connecting to the bottom ground plane while the even number of cells have the

inductors connecting to the top ground plane. In this way, the space between inductors is at

a maximum. This design is expected to have better symmetry than placing all the inductors

on one side. We decided to use a gap-capacitor design as the coupling capacitor, as shown

in Fig. 6.4. We should be able to minimize the distance between the coupling capacitor and

the LHTL to avoid any unwanted parasitic resonance mode. Besides, the gap width is very

easy to control during the fabrication. For the 2 µm gap, it should have the capacitance of

roughly 30 fF based on Q3D simulation. Based on Eq. 5.38, the coupling quality factor Qc

for the mode around 7 GHz should be about 105, which is close to our internal quality factor

discussed in Sec. 5.5 estimation; thus, it should be able to reach the critical coupling range.

With all these designs combined together, the chip layout is shown in Fig. 6.5. The total

number of cells we can fit in an active area of 4× 4 mm2 is 42.

4 mm

Launching pad

CPW 42 cell LHL

Figure 6.5: Metamaterial resonator chip layout with dimensions.



59

Chapter 7

Measurement of metamaterial

resonators

In this chapter, I will cover the microwave measurements of the metamaterial resonances,

the measurement setup, and imaging experiments to visualize the microwave modes struc-

ture. The fabrication process of the metamaterial resonator will be described in detail in

Chapter 10.

7.1 Experimental setup for microwave measurements

Once our 42-cell metamaterial resonator has been fabricated, it is loaded into a printed circuit

board (PCB) with the dimension discussed in Chap. 6 as shown in Fig. 7.1. The launching

pads are connected using aluminum wire-bonds to the center traces of the board which then

connects to the outside through SubMiniature version A (SMA) connectors. The ground

plane of the sample is connected with the PCB ground plane through numerous wire-bonds

in order to maintain a low impedance microwave ground around the entire perimeter of the

chip. Some jumper wires are also used to keep the sample ground plane equipotential. The

wire-bonds are made of aluminum with 1% silicon with diameter of 32 µm. An aluminum

cover is used to protect the sample from unwanted black body radiation and magnetic fields.



60

20 μm

60 μm

60 μm

20 μm

1 mm

100 μm

(a) (b) (c)

(d)

(e) (f)

Cc

(g)

2 mm

(h)

1 cmoutput

input

Figure 7.1: Optical micrograph images of a chip identical to the metamaterial sample used
for measurement: (a) close-up image of input gap capacitor Cc and the first few cells;
(b) meander-line inductor of the first cell; (c) detail of input gap capacitor and connec-
tion between inductor and capacitor of first unit cell; (d) zoomed-out image of entire chip;
(e) zoomed-in image of inter-digitated capacitors; (f) detail of fingers and gaps in inter-
digitated capacitors; (g) zoomed-out image of the chip fitting in the sample holder and
the wire bonds; (h) the entire sample holder with chip bonded in place and input/output
connections marked.

The sample is then mounted on the cold finger of our Adiabatic Demagnetization Refrig-

erator (ADR) from High Precision Devices. Our ADR has 4 different temperature stages:

60 K stage, 3 K stage, 700 mK stage and the cold finger which can cool to a base temperature

of 50 mK. The 60 K and 3 K stages use a Pulse Tube Refrigerator to keep the temperature

stable at these levels. A superconducting magnet which is placed on the 3 K stage will

create a magnetic field up to 4 T when operated using a current of 9 A. Two paramagnetic

salt pills, one made of Gadolinium Gallium Garnet (GGG) is on the 700 mK stage, and one

made of Ferric Ammonium Alum (FAA) on the 50 mK stage, can be polarized by ramping

the magnet to full field and soaking for roughly one hour. This ensures the magnetization
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of the salt pills are as close to maximum as possible so the entropy of the salt pills is at the

minimum. The salt pills are thermally connected to the 3 K stage through a heat switch

that is kept closed during the soaking in order to stabilize the temperature of the salt pills

to 3 K. After soaking for one or two hours, the heat switch is then opened so that the salt

pills are thermally isolated from the rest of the system so that no heat can flow in or out

of the salt pills or cold finger. Then the magnetic field is slowly reduced by reducing the

DC current. The salt pills are magnetized after the soaking step. As the magnetic field

is reduced, the interaction energy between the spins and the magnetic field decreases, but

since no heat can flow in or out of the salt pills, the temperature must decrease [102]. As

a result of this process, the GGG stage cools to 700 mK and the FAA stage reaches 50 mK

Ideally, this process is reversible: ramping up the magnetic field again increases the inter-

action energy between the spins and the magnetic field, which must raise the temperature.

This provides an effective way of controlling the temperature to stay at a value between the

base temperature and 3 K.

We use a Vector Network Analyzer (VNA, model N523A, 300 kHz-20 GHz) to perform

the microwave transmission S21(f) measurement discussed in Sec. 5.4. It provides an input

AC voltage through port 1 with impedance of 50 Ω and measures the complex ratio of the

output voltage on port 2 of 50 Ω load impedance to the input voltage. The microwave

signal sent from the port 1 of VNA is transmitted through a transmission line to the top

of ADR and down to the input end of the metamaterial passing through 39 dB of cold

attenuation for thermalization. The measurement setup schematic is shown in Fig. 7.2. The

signal then passes through the metamaterial resonator and then goes back to the port 2

of VNA amplified by a HEMT mounted on the 3 K plate of the ADR and again with a

room-temperature amplifier (NARDA West) with 35 dB gain. For magnetic shielding, a

cryogenic mu-metal can mounted on the 3 K plate is placed to surround the sample. In

order to characterize the transmission baseline, a separate measurement of full transmission

is performed. We load a sample with a CPW type of feedline in the same type of sample
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Metamaterial
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Figure 7.2: Microwave measurement setup inside ADR with attenuation/amplification spec-
ified on each temperature stage.

holder and connect it in the same way as our metamaterial sample and cool it down to the

same temperature to measure the S21(f). Ideally, this could give us a full transmission which

can serve as a baseline to our metamaterial measurement although there are always small

chip to chip differences which can introduce small variations in the baseline transmission.

7.2 S21(f ) measurement result

In this section, we present measurements for one of our metamaterial resonators at two

different temperatures: 65 mK and 3 K with input power of ∼ −90 dBm applied on the

input end of the sample. Fig. 7.3 is the calibrated measurement results: black solid line is

the base temperature while the blue dashed line is the high temperature result. It can be

found that the spectrum exhibits numerous sharp modes that generally get further apart for

higher frequencies, except for the lowest few modes where the spacing is somewhat larger.
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The infrared cut-off of our metamaterial resonator occurs at 4.245 GHz. The measured
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Figure 7.3: Measurements of the magnitude of the microwave transmission |S21(f)| on the
ADR at two different temperatures: 65 mK (black solid line); 3 K (blue dashed line). Inset:
zoomed-in plot in the vicinity of n = 38 mode near 5.20 GHz.

smallest mode spacing is 147 MHz, which is between mode 33 and mode 32, while according

to Eq. (5.41), the smallest mode-spacing should be around 14 MHz between mode 39 and

38. After mode 32, the mode spacing increases as the frequency increases, which agrees

with theory prediction as shown in Fig. 5.2. Due to the limitation of our HEMT bandwidth

which is roughly 2-16 GHz, the highest frequency resonance we can measure is roughly 15

GHz, which corresponds to the 9th mode. The highest Q we measured at base temperature

is around 26,000. I’ll discuss the quality factor in detail in Sec. 7.3. From the two different

curves at different temperatures, it’s clear that quality factors and the resonance frequen-

cies both depend on temperature. Due to an increased population of thermal quasiparticles

which brings higher internal loss, Q is lower at higher temperature which is far away from

the Tc of Nb at 9.26 K [103]. Also, due to higher kinetic inductance at higher tempera-

ture, the resonance frequency will shift down [104], which is reflected clearly in the inset of

Fig. 7.3. Understanding the temperature dependence of the modes’ frequency response will

be important for interpreting the LSM imaging results presented in section 7.5.2.
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7.3 Quality factor

Once S21(f) is measured, we can fit the resonance trajectory in the complex plane using

a standard function described in numerous papers on superconducting resonators, includ-

ing [91]

S21(f) =
Q

Qc

ejφ

1 + 2jQ(f − f0)/f0

, (7.1)

where Q, Qc and φ are the total quality factor, the coupling quality factor and the rotation

of resonance circle on complex plane respectively. The internal quality factor Qi can be

separated by using the relation in Eq. 3.57 of

1

Q
=

1

Qc

+
1

Qi

,

as discussed in Sec. 3.3. This method works very well for absorption type of resonance, for

which the transmisson is always full away from the resonance and only shows a Lorentzian dip

at the resonance frequency, thus allowing for the baseline to be self-calibrated [105]. However,

for a transmission measurement that yields a peak on resonance, extracting the internal and

external quality factors requires a separate calibration of the baseline transmission through

the system, so that a measurement of |S21| = 1 corresponds to full transmission. The

accuracy of the fit then depends crucially on the quality of the baseline subtraction. As

introduced in Section 7.2, the baseline was taken in a separate measurement. This technique

was used and the result was tested multiple times in our lab so that the variation in the

transmission levels between different baseline measurements is in the range of±2 dB. It turns

out that since the quality factor of a LHTL resonance decreases quickly as the frequency

goes up, many of our modes are in a over-coupled regime with Qc � Qi, so the total Q is

dominated by the coupling Q. In this situation, it’s difficult to extract Qi accurately. Also,

a small change in the baseline will result in a big change in the internal loss fit rather than

the coupling loss. Here, we focus on the fitting for the coupling loss first. In order to counter

the baseline inaccuracy, we manually add an offset of ±2 dB to the baseline. On the other
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hand, for a passive device, such as these LHTL resonances, |S21| should never exceed unity.

Thus, if a certain resonance is higher than 0 dB after counting the offset, we only shift it up

to −0.01 dB.
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Figure 7.4: The external loss plot in log scale of the measurement result compared with
AWR simulation and theoretical dependence calculated from Eq. (5.15) with parameters of
LL = 0.625 nH, CL = 250 fF, LR = 59.5 pH and CR = 21.8 fF.

Fig. 7.4 is the comparison of the coupling loss between the measurement data, AWR

simulation data with no internal loss, and the numerical calculation of the Q extracted from

the FWHM of S21 by Eq. (5.15). We can see that the numerical result agrees very well with

the AWR simulation, which is what we expected. However, the measurement data has higher

coupling loss than the numerical calculation at low frequency and high mode number. At

high frequency, it falls close to the numerical curve. Figure 7.5 is the comparison between the

extracted 1/Qi and 1/Qc from the measured S21 data. It can be seen that for most modes, the

metamaterial resonator is in the over-coupled regime where Qc � Qi, so extracting accurate

Qi values from the fit S21(f) fits is difficult. Overall, the internal loss is around 5 × 10−6,

which is consistent with previous experiments of superconducting resonator on Si substrate,

where the loss is dominated by dielectric loss at the substrate surface and interfaces with the
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Figure 7.5: Comparison of internal loss and coupling loss extracted from the measured S21(f).

metal traces [100, 101]. The large error bars on the 1/Qi points indicate that modest changes

in the baseline level have a significant impact on the extracted 1/Qi levels. We note that the

first two low frequency modes have anomalously high internal loss, which is consistent with

results on other metamaterial resonators that we measured, including Al samples. We are

still investigating the source of this excessive internal loss on the lowest frequency modes. It

may perhaps be related to grounding issues or the staggered inductor geometry which may

especially impact these shortest wavelength modes.

7.4 Temperature-dependence and power-dependence

measurements

Besides the measurements of metamaterials fabricated with Nb films, we have also made

similar devices using Al thin films and performed similar microwave transmission measure-

ments [2] and Fig. 7.6 shows the measured transmission of one of them. The spectrum is

similar to the Nb metamaterial described in Sec. 7.2. However, due to the lower Tc of Al
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compared to Nb, when we measured the sample at different temperature or power, there

were significant differences that will be addressed here.
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Figure 7.6: Measured S21(f) of a Al metamaterial resonator from Fig. 4(a) in Ref. [2] with
inset removed.

We measured the Al metamaterial chip on the ADR and adjusted the temperature by

tuning the ADR magnetic field. As discussed in Section 7.1, when operating in the adiabatic

regime with the ADR heat switch opened, starting from 3 K with maximum magnetic field

strength, the ADR can cool down to base temperature if fully demagnetized. This process

is reversible: if the magnetic field is increased, the temperature will also increase. Thus, we

can control the temperature in the range between 50 mK to 3 K by adjusting the magnetic

field. Since the Tc of Al is ∼1.2 K which is below 3 K, we are able to measure the chip

at a temperature close to Tc and expect to see the resonance shift to lower frequency due

to higher kinetic inductance [42] and quality factor drop due to higher loss associated with

increased number of quasiparticles. The results for one of the modes are shown in Fig. 7.7.

At the base temperature of 50 mK, the peak is sharp and the transmission is high. As the

temperature rises, the peak almost has no change in transmission or frequency at 120 mK-

220 mK, and then starts to shift to lower frequency where it becomes broader and lower,

just as we expected. The Tc of Nb is much higher than 3 K, thus the shift in frequency and

Q in the same temperature range is much less obvious.
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Figure 7.7: One of the Al metamaterial resonator modes at 3.724 GHz measured at different
temperature on ADR.
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Figure 7.8: One of the Al metamaterial resonator modes at 3.724 GHz measured at different
input power on ADR.
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We also measured the transmission at different input power on the metamaterial and

the results for the same mode in Fig. 7.7 are shown in Fig. 7.8. At relatively low power,

the peak is well defined. As the power increases, the peak starts to show some nonlinearity

where it is no longer a Lorentzian shape and the transmission is suppressed. This can be

interpreted by the current on resonance exceeding the critical current of some of the meander-

line inductors, which makes them no longer superconducting. Thus, the loss will increase

and the transmission near the resonance frequency is lowered. For the same type of thin-film

meander-line geometry, Nb has a larger critical current, which makes the power-dependent

effect on the resonance much weaker than in the Al sample.

7.5 Laser Scanning Microscopy imaging

In addition to microwave measurement of S21 at low temperature, a low-temperature Laser

Scanning Microscopy (LSM) imaging experiment of our sample was done by Alexander Zhu-

ravel and Alexey Ustinov at the Karlsruhe Institute of Technology. The LSM is a technique

that has been used previously to image the microwave current distributions in a wide variety

of superconducting structures under rf excitation [106, 107]. The various modes of LSM

operation have been described in detail in Refs. [108, 109].

Here I am going to briefly discuss the basic principle of the operation of the LSM. The

LSM uses a localized energy deposition instrument that deposits a portion of energy into a

superconducting sample locally as a perturbation and then measures some global response

of the sample, like S21(f), to that energy at that particular location. A focused beam of a

diode laser is used as the energy source. It acts on the surface of the planar objects, including

superconducting microwave devices, to form a non-contact light (and/or thermal) probe for

2D rf and optical characterization. The laser beam raster scans the surface of the sample

while the beam intensity is modulated at a low frequency. By using a lock-in technique, an

image of the photoresponse PR(x, y, f) can be produced by correlating the output signal
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with the location of the laser spot.

7.5.1 LSM imaging result

In the metamaterial resonator measurement, the chip was mounted inside a vacuum cavity

of a cryostat with optical access which stabilizes the temperature of the sample. Although

the temperature ideally could be controlled in the range of 2.5− 30 K with an accuracy of 1

mK by using a resistive heater bifilarly coiled around a copper cold stage, it is much higher

than the Tc of Al which is a metal commonly used in cQED. This is one of the reasons why

we use Nb instead of Al in the fabrication process. The temperature of the chip was ∼5 K

during the imaging of our metamaterial resonator. The laser with wavelength of 640 nm

was focused to a spot of 12µm diameter on the sample with a power of ∼ 10µW at the

sample, resulting in a local temperature modulation on the sample at the location of the

laser spot of no more than a few mK. The laser intensity was modulated at 100 kHz while

the microwave transmission S21(f) was measured with semi-rigid cryogenic coaxial cables

carrying microwave signals to and from the sample. The maximum frequency accessible on

the LSM was 20 GHz, similar to the limitation of the measurement electronics on our ADR.

LSM imaging provides us a way of looking at the standing wave patterns of our meta-

material transmission line resonators. Figure 7.9(a) contains an image of the metamaterial

in the LSM, with an arrow indicating the orientation of 1D scans that were measured in the

LSM. As the frequency was varied, the average PR signal exhibited sharp peaks, shown in

Fig. 7.9(b), which precisely line up with the microwave transmission resonances in |S21(f)|

that were measured simultaneously and shown in Fig. 7.9(c). In Fig. 7.9(d), the density plot

of PR(x, y0, f), where y0 indicates the location of the linescan on the chip, again shows the

sharp features at the resonant frequencies, but also exhibits fine structure along the scan

direction. Thus, it is clear that the LSM imaging of the device can be used to investigate

resonances in the metamaterial and their corresponding standing-wave patterns.

We then performed 2D scans of PR(x, y, fn) while exciting one of the metamaterial
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Figure 7.9: (Color online) (a) LSM reflectivity image with arrow indicating direction of
1D linescans. (b) Microwave transmission |S21(f)| measured on LSM. (c) Average LSM
photoresponse PR(y0, f) along 1D linescans. (d) 1D linescans PR(x, y0, f) vs. frequency;
dashed lines indicate location of input/output coupling capacitors.

modes, in this case the n = 40 mode at 3.34 GHz, which is the next-to-lowest resonant

frequency in the device [Fig. 7.10(b)]. The LSM image exhibits a clear standing wave pattern

with two antinodes along the length of the transmission line. We have performed numerical

electromagnetic simulations of our metamaterial layout using Sonnet, as will be described

in detail in Sec. 8.2. Figures 7.10(c, d) contain plots of the simulated charge density and

current density in the metamaterial, also excited on the n = 40 mode. Fig. 7.10(b) shows the

a 2D image of the LSM photoresponse when the n = 40 mode of the metamaterial is excited.

In the Fig. 7.10(b) for the capacitors in the LHTL near an antinode, we observe that the

photoresponse is highest at the edges of the capacitor where the inductors are connected.

This effect can be attributed to the enhanced reflectivity of the laser signal from the regions

covered with Nb compared with the bare Si regions beyond the capacitor edge. When the

laser spot straddles the edge of the capacitor and the bare Si beyond, the excess absorbed

energy in the Si enhances the photoresponse signal.

When the LSM imaging is applied to superconducting structures, a bolometric response
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Figure 7.10: (Color online) LSM photoresponse compared with Sonnet current/charge den-
sity simulation: (a) the reflectivity map showing details of the metamaterial design in the
scanned area; (b) 2D distribution of microwave photoresponse PR(x, y, f40) that illustrates
standing wave pattern of RF current density distribution in n = 40 mode at frequency of
3.34 GHz; (c) Sonnet charge density simulation of n = 40 mode; (d) Sonnet current density
simulation of n = 40 mode.

will be produced by the interaction of the laser spot with the superconductor. Due to local

heating of the superconductor by the absorbed laser probe, this response has both inductive

and resistive components. In addition, a non-thermal response due to the generation of

nonequilibrium quasiparticles in the superconductor from the deposited pair-breaking laser

energy can be caused. All three types of photoresponse signals are proportional to the square

of the local microwave current density in the superconductor, JMW (x, y) [110]. In our LSM

imaging experiments on the LHTLs, we have observed a significant photoresponse in the

vicinity of the meander-lines near the current antinodes in the standing wave patterns which

is precisely in regions where we expect large microwave currents will occur. The frequency-

dependence of the PR on our LHTLs [Fig. 7.10(b)] and correlated |S21(f)| [Fig. 7.10(c)] is
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41                                                                34                                                              12

2.09 GHz                                                    5.86 GHz                                                    2.77 GHz
40                                                                22                                                              11

3.44 GHz                                                    8.04 GHz                                                   13.65 GHz
39                                                                21                                                              10

4.30 GHz                                                    8.31 GHz                                                   14.63 GHz
38                                                                20                                                               9    

4.83 GHz                                                    8.62 GHz                                                   15.82 GHz
37                                                                19                                                               8

5.19 GHz                                                    8.96 GHz                                                   17.19 GHz
36                                                                18                                                               7

5.45 GHz                                                    9.33 GHz                                                   18.59 GHz 

Figure 7.11: (Color online) Array of LSM images of metamaterial for different modes, labeled
by mode number and frequency. The under-sampling effect is very clear for the images of
low frequency modes in the left column where wavelength should be short but appear to be
long. The green boxes are the pair of n = 34 and n = 8 modes where they both have 8
anti-nodes. The blue boxes are the pair of n = 22 and n = 20 modes where they both have
22 anti-nodes.

most consistent with the non-thermal LSM response mechanism [107]. However, an even

larger photoresponse was observed in regions where we expect large microwave voltages,

around the capacitors near the standing-wave antinodes for the charge density. We suspect

this to be caused by an enhanced loss in the capacitors that can be explained by photo-

induced carriers in the Si substrate in between capacitor fingers. This mechanism results in

the largest PR in regions with large microwave electric fields. We are not aware of reports of

prior LSM imaging experiments on superconducting interdigitated capacitors on Si. Thus,

the nature of our sample layout and substrate material provide us with a photoresponse

image of both the microwave current and charge density distributions in our LHTLs.

We have repeated the LSM imaging for all of the modes in our metamaterial below 20 GHz

and many of them are presented in an array shown in Fig. 7.11. The various features in

these images will be discussed in the section 7.5.2.
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Figure 7.12: Plot of mode frequency vs. number of antinodes from the corresponding LSM
images.

7.5.2 LSM imaging analysis

From the LSM images of the metamaterial resonator for the high-frequency modes, we

observe a stepwise change in the number of antinodes in the standing-wave pattern as we

move between modes. For all of the modes that we can image above mode 21, it is clear

that the wavenumber is decreasing with increasing frequency, consistent with the left-handed

dispersion relation from Eq. (4.42). However, for the lower frequency modes, from mode 41

to 21, the images show a standing-wave pattern with an increasing number of antinodes for

increasing mode frequency. Fig. 7.12 is the plot of mode frequency vs. number of antinodes

in the corresponding LSM image. From this plot, we observe that each low-frequency mode

has a high-frequency partner mode with the same number of antinodes in its standing wave

pattern; for example, modes 34 and 8 in Fig. 7.11 both exhibit 8 antinodes.

We can understand this behavior as an undersampling effect for the shorter wavelength

modes (low frequency modes) due to the discrete lumped-element nature of our metamaterial

transmission line. Although non-ideal lumped element effects may be important, especially

at short wavelengths, for now we assume that the currents and voltages are constant within

each unit cell. Thus, we cannot sample the standing-wave structure on any finer scale
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Figure 7.13: (a) Circuit schematics for ideal 10-cell metamaterial resonator. Waveform for
square of standing-wave current for hypothetical continuous LHTL for (b) mode 8 and (c)
mode 2 including red circles corresponding to location of each unit cell.

than the unit-cell length ∆x. This can be seen in a simplified model of an ideal 10-cell

metamaterial resonator with no stray reactances.

For now, we focus on the microwave currents in the inductors, but the same analysis

would also apply to the voltages across the capacitors. Here we assume the standing-wave

pattern for the current in a hypothetical continuous metamaterial is given by sin(knx) based

on our open-ended boundary condition. Since the signal in the LSM images is proportional

to the square of the local current density, in Fig. 7.13 we plot the square of this continuous

waveform. The figure contains the continuous waveforms for a low-frequency mode N − j

and its partner high-frequency mode j, which are clearly different. However, with the points

included on top of each curve corresponding to the unit cell locations, the undersampling of

the lower-frequency mode results in the sampled wave patterns appear to be the same. This

is consistent with the LSM images and the plot of ωn vs. kn in Fig. 7.12 if we extend the

example case to N = 42 cell.

Besides a comparison with the LSM images, we can also use this approach to understand

more details about the nature of the mode patterns in the metamaterial resonators. If we
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Figure 7.14: Circuit schematics for ideal 10-cell metamaterial resonators with arrows indi-
cating relative sense of currents flowing in each unit cell along waveform for standing-wave
current for hypothetical continuous LHTL and red circles corresponding to location of each
unit cell for (a) mode 8 and (b) mode 2.

again consider the ideal 10-unit cell device but plot the local current vs. position rather than

the square of the current, we can again compare the continuous waveform for the standing

wave current along with the corresponding discrete values at each of the unit cells (Fig. 7.14).

This approach indicates that modes n > N/2 should have currents that alternate in sign

between adjacent unit cells, while for the higher frequency modes with n < N/2, the currents

should flow in the same direction for all of the unit cells within a given half wavelength of

the standing-wave pattern.

The LSM images also show an interesting beating-like pattern, especially for modes with

n close to N/2 = 21. As shown in Fig. 7.15(a) there’s a clear beating pattern for the mode

n = 23. A line-cut scan in the center of the capacitors was taken and in Fig. 7.15(b) we plot

the square root of the result from that line-cut and compare it with Fig. 7.15(c) based on

the relation described previously that the LSM PR corresponds to the square of the local
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Figure 7.15: (Color online) Beating pattern caused by under-sampling effect: (a) LSM PR
of mode 23 and an arrow showing the location and direction of the line-cut scan; (b) Square
root of the line-cut of LSM photoresponse of mode 23 in the center of capacitors; (c) voltage
standing wave pattern calculated by Eq. (8.5) of mode 23 of a 42 cell metamaterial resonator.
The calculated wave pattern and the LSM PR both show a similar beating patter.

rf field. Fig. 7.15(c) is the calculated voltage standing wave pattern on the capacitors of

mode n = 23, which will be discussed in detail in section 8.2.3. It can be found that they

both exhibit a very similar beating pattern. The voltage of mode n = 23 at each unit cell

is described by the magnitude of Eq. (8.5), which is a discrete sine wave. The agreement

indicates that the under-sampling effect is the origin of the beating.



78

Chapter 8

Numerical simulations

In this chapter, I will describe two powerful numerical simulation tools that were used to

study the behavior and properties of the metamaterial resonators: AWR Microwave Office

and Sonnet. AWR simulations are a quick way to model the metamaterial spectrum with a

lumped-element approach. But this approach has limitations of not being able to simulate

the geometry effects of staggered inductors, non-ideal grounding, and the short-wavelength

effects that deviate from ideal lumped-element behavior, etc. Sonnet on the other hand runs

EM simulation of the actual sample layout with high accuracy but requires much longer

time and massive computing resources. I will discuss the AWR simulations in section 8.1

and Sonnet simulations in section 8.2.

8.1 Lumped element circuit simulation using Applied

Wave Research (AWR) Microwave Office

A lumped-element model simulation is very useful for understanding the behavior of a meta-

material resonator. We select Applied Wave Research (AWR) Microwave Office as the circuit

simulation software.

Figure 8.1(a) shows the transmission spectrum S21(f) of a 42 cell metamaterial resonator.
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（a） (b)

Figure 8.1: (a) AWR simulation S21 result of a 42 cell metamaterial with the parameters of
LL = 0.625 nH, CL = 250 fF, LR = 59.5 pH and CR = 21.8 fF, consistent with the acutal
metamaterial sample. (b) The left-end of the schematic of the metamaterial simulated by
AWR.

AWR can only support a number of 10,000 steps when sweeping the frequency, so this

spectrum is not going to reflect the actual peak height at low frequency end where the peaks

are sharp and higher resolution is needed. Besides that, the lumped-element simulations

will not reflect the the geometry effects of staggered inductors, non-ideal grounding, and

the short-wavelength effects that deviate from ideal lumped-element behavior, etc. But it

has the speed advantage: to obtain such a spectrum would only take a few seconds. Thus,

we could always easily test our schematic in a very efficient manner. Fig. 8.1(b) is the

circuit schematic of the input port, coupling capacitor of left-end and the first three cells

of the metamaterial. The software supports many types of lumped-elements, which is very

convenient.

8.2 EM field simulation using Sonnet software

Beyond the lumped-element circuit modeling with AWR, simulating the actual chip layout

in an electromagnetic (EM) field solver is essential for interpreting the measurement results

and improving the design. It can provide us a chance to test the design with different metal

property, substrate property, and to make small changes in the design without actually
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fabricating the sample and measuring it in the fridge. However, a real challenge is that

to simulate a layout as large and complicated as our metamaterial resonator, it requires a

significant level of computing resources. Here in the Plourde Lab at Syracuse University,

we have a Sonnet software cluster that has 10 slave machines, each with 64 GB of memory,

which is just powerful enough to handle the simulation. Through the generosity of the

Sonnet company, which is located in Syracuse, we have been granted a complete license

to the Sonnet software tool, allowing us to run complete simulations of our metamaterial

resonators. Since we have gained a lot of very useful and important information about the

metamaterial from Sonnet simulation, I will introduce both how to simulate metamaterial

in Sonnet and discuss the simulation results in this section.

8.2.1 Sonnet Simulation setup

Although Sonnet is capable of simulation of multi-layer structures [111], we only need to

use the simplest setting as a top dielectric layer plus a metal layer then a bottom dielectric

layer corresponding to the Si substrate. In order to obtain better simulation results, all

the conditions should be as close to the actual measurement as possible. Our metamaterial

chip is a 90 nm thick layer of Nb on top of Si with no direct cover. So, first we import a

gds file of the area that we are going to simulate. In order to get the most accurate result,

simulating the entire 4×4 mm2 area of the metamaterial resonator chip is ideal. However, the

memory space required for this is far beyond the computing power we have, which would be

impossible for Sonnet to simulate. Instead, we import a gds file that just covers the resonator

with a reasonable width of ground-plane on the top and bottom as shown in Fig. 8.2, then

we add input and output ports of 50 Ω on the edge of the left and right side of the CPW

segment connecting to the metamaterial. The meshing size used here is 2 µm× 1 µm, which

is the smallest feature size in the device layout. Any smaller meshing size would increase the

memory required for the simulation that would either exceed the capability of our cluster or

add an unreasonable amount on the simulation time.
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The pressure inside the ADR at experimental temperature is in the range of 10−8 Torr.

Thus, the top dielectric can be defined as vacuum. In our case, the parameters we chose are:

thickness = 1100 µm , εr = 1, µr = 1, dielectric loss tangent = 0 and conductivity = 0. The

Figure 8.2: Sonnet simulation layout of the metamaterial resonator with the same geometry
as the measured sample mabe of Nb.

metal can be defined as lossless since the measurement is done at 50 mK which is much colder

than the Tc of Nb, so the resistive loss can be neglected. The bottom substrate is defined as Si

with εr = 11.9, µr = 1, thickness = 500 µm, conductivity = 0. Based on various experiments

looking at low-power, low-temperature measurements of superconducting resonators on Si,

where the loss is limited by a distribution of two-level system defects at the surfaces and

interfaces, we chose the dielectric loss tangent to be 5×10−6 [100, 101] even though it’s much

larger than the bulk loss tangent for Si. Since the internal loss expected in the metamaterial

comes mainly from the capacitors, and the internal quality factor for capacitance in a LC

oscillator would correspond to Qi = 1/ tan δ, the internal quality factor is expected to be

around 2× 105.

The next step is to define a frequency range and sweeping steps of the simulation. Since

the peaks are very narrow and close in the low frequency end and there are no resonances

expected below the infrared cut-off, we start the simulation from 3 GHz with 0.01 GHz

stepsize up to 7 GHz and then 0.05 GHz step-size to higher frequency. The resolution is fine

enough to find the peaks. Then we need to zoom-in on the peaks to find the actual shape

and height. One technique within Sonnet that is quite helpful involves the ”find Maximum

using ABS” function for frequencies near the center of the resonance peaks.
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8.2.2 Simulated transmission spectra

Sonnet does not have the frequency range limitation as we have in the actual microwave

measurement setup, so we can easily extend the spectrum up to 50 GHz or higher if needed.

Fig. 8.3(a) shows the S21 spectrum from Sonnet and comparison with measured S21 in Chap-
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Figure 8.3: (a) |S21(f)| from Sonnet simulation offset by 60 dB compared with measured
LHTL spectrum from ADR at 65mK. (b) |S21| from Sonnet simulation plotted out to 46 GHz
showing gap beyond n=0 mode near 40 GHz (n = 0).

ter 7 (Fig. 7.3). The Sonnet simulation agrees with the measurement reasonably well. They

both have the IR cut-off around 4 GHz and the first few modes deviate from the ideal dis-

persion for both cases. The Sonnet spectrum also has the highest density of peaks around

6 GHz. The smallest mode-spacing is around 150 MHz, which is the spacing of 31st mode
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and 30th mode. By extending the Sonnet simulation beyond the 16 GHz upper limit of our

measurement range, we observe that 40 GHz marks the end of the first 42 modes. Then we

find a gap in between 40 GHz and 44 GHz. As discussed in Sec. 5.2, the above evidence

shows that we have successfully realized a 42 cell LHRH transmission line resonator. The

left-handed branch has the zeroth order mode at 40 GHz and the 41st mode at 4 GHz. The

two zeroth order modes – one at the lower end of the gap and the other at the upper end

– correspond to the self-resonance frequencies of indutor or capacitor in each unit cell. The

Sonnet self-resonance simulation results of the inductor and capacitor that were discussed

in Chapter 6 suggest that the self-resonance frequency of the capacitor to be lower than the

inductor. Based on that, we can estimate the stray reactances values to be LR = 59.5 pH

and CR = 21.8 fF, respectively.

8.2.3 Current/charge density simulation

Sonnet also provides us with the ability of simulating the spatial distribution of the current

and charge density for any given frequency. We extract the center frequency for each of

the metamaterial resonator modes from the S21(f) simulation. We then select the Sonnet

settings to perform either a current or charge density simulation with the frequency point

as individual resonance frequencies. This type of simulation requires a significant amount of

time compared to the simple transmission simulation. However, we only need a few dozen

frequency points since we are primarily interested in the current and charge density patterns

on resonance. So, the overall time to run the current density simulation of all 42 modes

would be less than two days if we use all of the computing resources available in our cluster.

The result automatically contains both the information of current and charge density of both

magnitude and phase. The software itself would only be able to plot the magnitude, but

users can always save all the data and separately plot the real or imaginary part if needed.

Depending on the actual size of the simulation area and how we select the mesh size, the

data files could be quite large.
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We simulated the current/charge density distribution of the metamaterial resonator for

all of its left-handed resonance frequencies. From the result, we found clear standing wave

patterns for both current and charge densities. In the charge density simulations, the ca-

pacitors have a much stronger response than the inductors, while in the current density,

the inductors show stronger reactance. This phenomenon is consistent with LC oscillators,

where most of the electric energy is stored in capacitors, which have high charge density,

and most of the magnetic energy would be stored in the inductors, which have high current

density.

Like the LSM imaging results, the Sonnet charge/current density [Fig. 8.5(a) and 8.4(a)]

also exhibits the undersampling effect discussed previously. The number of anti-nodes in the

charge density distribution for pairs of modes, p and N − p, is equal to p for both modes.

The current density distributions exhibit a similar effect at low frequency. Both modes p and

N − p have the same number of antinodes in the current density patterns, but now there is

also an added phenomenon that the position of the antinodes between the low-n and high-n

modes has a half wavelength shift.

Following Chapter 5, a discrete transmission line resonator with open-ended boundary

conditions would have the voltage and current at cell m as:

Vm = V0

[
e−jmβ∆x + ej(m−1)β∆x

]
(8.1)

Im = I0

[
e−j(m+ 1

2
)β∆x − ej(m−

1
2

)β∆x
]
. (8.2)

If we fold the dispersion relation around the y-axis into the first quadrant, as discussed in

Chapter 5, the voltage and current of the n-th resonance become:

Vm,n = V0

[
e−jm

n
N
π + ej(m−1) n

N
π
]

(8.3)

Im,n = I0

[
e−j(m+ 1

2
) n
N
π − ej(m−

1
2

) n
N
π
]
. (8.4)

Here the voltage represents the voltage on each cell to the ground and the current represents
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Figure 8.4: (a) Sonnet charge density simulation result labeled by the mode number. The
color bar is not shown for each individual image but red means high response and blue means
low response. Similarly to the LSM images, the high frequency modes on the right column
show clear standing wave patterns as well as the low frequency modes on the left column but
with under-sampling effect. The high frequency modes appear to have in-cell modulations.
The pairing modes from the left column and the right column are appear to be in phase.
(b) Plot of standing wave patter of voltage from Eq. (8.5) to compare with charge density
patterns.
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Figure 8.5: (a) Sonnet current density simulation result labeled by the mode number. Sim-
ilarly to Fig. 8.4(a), the color bar is not shown for each individual image but red means
high response and blue means low response. The color scale is different for each image and
these are not included here for clarity. The high frequency modes on the right column show
clear standing wave patterns as well as the low frequency modes on the left column but with
under-sampling effect. The pairing modes from the left column and the right column, which
means the n = p and n = 41 − p, exhibit the same number of antinodes. However, the
positions of the antinodes have a half-wavelength shift. (b) Plot of standing wave patterns
of current from Eq. (8.6) to compare with current density patterns.
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Figure 8.6: Current and charge density pattern of a 42-cell LHTL resonator with the same
geometry of the sample we measured and discussed in the main paper simulated by Son-
net and compared with Eq. (8.5) and (8.6) with corresponding value of mode number n:
(a) Sonnet current density at the n = 1 mode, (b) Sonnet current density at the n = 39
mode, (c) plot of Eq. (8.5) at n = 3 mode, (d) plot of Eq. (8.5) at n = 39 mode, (e) Sonnet
charge density at n = 3 mode, (f) Sonnet current density at the n = 39 mode, (g) plot of
Eq. (8.6) at n = 3 mode, (h) plot of Eq. (8.6) at n = 39 mode.

the current through each cell. Thus, the voltage across each capacitor of the LHTL is the

voltage difference of neighboring cells: VCL,m = Vm−1 − Vm and the current flowing through

the inductor is the current difference of neighboring cells: ILL,m = Im−1 − Im. Therefore, on

resonance n, the voltage across capacitor m and the current through inductor m are given
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by:

VCL,m,n = 2V0 sin
[
(m− 1)

nπ

N

] [
sin
(nπ
N

)
+ j − j cos

(nπ
N

)]
(8.5)

ILL,m,n = 2I0 cos

[(
m− 1

2

)
nπ

N

] [
1− cos

( nπ
2N

)
− j sin

( nπ
2N

)]
. (8.6)

The charge density, which is related to the voltage across the capacitors, and the current

density, which is related to the current through the inductors, in the Sonnet images can be

compared with the magnitude of the quantities described by Eqs. (8.5)-(8.6). As shown in

Figs. 8.4(a) and 8.5(a), these expressions are in good agreement with the charge and current

density distributions from the Sonnet images. In the limit of small n and large N , we have:

|VCL,m,1| ∼ 2V0

∣∣∣∣( πN ) sin

[
(m− 1)π

N

]∣∣∣∣ (8.7)

|ILL,m,1| ∼ 2I0

∣∣∣∣∣( πN ) cos

[(
m− 1

2

)
π

N

]∣∣∣∣∣ . (8.8)

From Eqs. (8.7)-(8.8), the voltage and current on resonance are close to out of phase spatially,

as we expect to see in a continuous right-handed resonator. On the other hand, in the limit

of n = N − 1, we have:

|VCL,m,N−1| ∼ 4V0

∣∣∣∣sin [(N − 1

N

)
(m− 1)π

]∣∣∣∣ (8.9)

|ILL,m,N−1| ∼ 4I0

∣∣∣∣sin [(N − 1

N

)
(m− 1) π

]∣∣∣∣ , (8.10)

thus, the voltage and current standing wave patterns are now in phase spatially. Although

this is counter-intuitive, it is supported by Sonnet simulations (shown in Fig. 8.6) that the

current and charge are out of phase for the n = 3 mode but in phase for the n = 39 mode.

The LSM imaging experiments on our metamaterial resonators also exhibit this behavior.

Shown in Fig. 8.7, although the LSM signal in the inductors is considerably weaker than in

the capacitors, we can still see some evidence that the antinodes in the inductors are shifted
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Figure 8.7: The high-resolution LSM images of n = 40 and n = 9 modes. (a) high-resolution
image of 11 cells of n = 40 mode. (b) sum of the LSM PR line-scan near the center of
inductors on the top and bottom. (c) LSM PR line-scan near the center of capacitors.
(d) high-resolution LSM imaging of 11 cells of n = 9 mode. (e) sum of the LSM PR line-
scan near the center of indutors on the top and bottom of n = 9 mode. (f) LSM PR line-scan
near the center of capacitors of n = 9 mode. For n = 40 mode, the response of inductors and
capacitors are clearly in phase. For n = 9 mode, the response of inductors and capacitors
are out of phase, although the PR signal in the inductors is rather weak.
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with respect to those in the capacitors at high frequencies, while for the low-frequency

resonances, they line up.

The same analytic analysis applies also to the discrete RHTL resonator. Eqs. (8.1)-(8.2)

are just current through inductors and voltage across the capacitors, so when n is small, like

n = 1, we have:

|VCR,m,1| ∼ 2V0

∣∣∣∣cos

(
2m− 1

2N
π

)∣∣∣∣ (8.11)

|ILR,m,1| ∼ 2I0

∣∣∣sin(mπ
N

)∣∣∣ . (8.12)

The voltage and current standing wave patterns from these two expressions are close to be

spatially out of phase, as one would expect for a continuous right-handed resonator. In the

high-n limit, for n = N − 1, voltage and current standing wave patterns become:

|VCR,m,N−1| ∼ 2V0

∣∣∣∣sin(N − 1

N
mπ

)∣∣∣∣ (8.13)

|ILR,m,N−1| ∼ 2I0

∣∣∣∣sin(N − 1

N
mπ

)∣∣∣∣ . (8.14)

As with the LHTL standing wave patterns in the high-n limit, the voltage and current

distributions are spatially in phase. We have also confirmed this behavior through Sonnet

simulations of a discrete RHTL. To summarize, for a discrete transmission line resonator –

with either a left- or right-handed dispersion relation, for small n modes, the antinodes in

the voltage and current standing wave patterns will be spatially out of phase, while for large

n modes, they will approach being spatially in phase.

8.2.4 Quality factor

As with the experimental measurements, we can extract the quality factor for each resonance

from the Sonnet simulations of S21(f) through the same fitting procedure using Eq. (7.1) to

fit the resonance trajectory of S21(f) in the complex plane and extracting Qc and Qi using



91

Eq. (7.3).

As described previously, for the Sonnet simulations, loss was included as a substrate

dielectric loss, while the metal traces were modeled as lossless components. So, the internal

quality factor Qi for each mode is expected to be dominated by 1/ tan δ, where tan δ is the

dielectric loss tangent that can be defined directly in the Sonnet substrate loss parameters.

As discussed in Section 8.2.1, this value is set to be 5 × 10−6. In Fig. 8.8, it’s clear that

the first few low frequency modes have almost constant Qi that is very close to 1/ tan δ. At

high frequency, where Qc is much larger than Qi and extracting Qi becomes more difficult,

the internal loss has increased somewhat, although the resonances in this regime are still

strongly overcoupled.

1/Qi

1/Qc

(1
/Q

i, 
1/

Q
c)

 x
 1
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Figure 8.8: Qi and Qc values extracted from Sonnet |S21(f)| simulation. The substrate loss
tangent is set to be tan δ = 5× 10−6.

The coupling quality factor Qc for each mode from the Sonnet simulation can also be

extracted from the resonance fits following the same procedure as was applied to the fits of

the experimental data. However, unlike the fits to the experimental resonances that were

subject to uncertainties in the baseline transmission, the Sonnet simulation results do not

have such an issue since the simulated transmission is normalized perfectly. The coupling

loss for the various resonances from the Sonnet simulations are shown in both Fig. 8.8 and

Fig. 8.11. Overall, the result is similar to the theoretical curve which is quite low for high-n
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modes and with a rapid increase as the mode number decreases. While at the low-frequency

end of the spectrum, the Sonnet result for coupling loss is higher compared to the theoretical

prediction from Eq. (5.38).

8.2.5 Effects of inductor staggering in metamaterial resonators

As introduced in Chapter 6, our metamaterial resonator layout has the inductors of neigh-

boring cells directed in opposite directions. We can examine the effects of this staggered

arrangement for the inductors in Sonnet and compare with the spectra for a non-staggered

inductor layout.

Staggered

Non-staggered
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Figure 8.9: |S21(f)| spectrum of Sonnet simulation of non-staggered 42 cell LHTL resonator
and comparison with staggered geometry spectrum. The former is shifted down by 40 dB
for clarity.

To make this comparison, we construct a similar LHTL pattern in Sonnet like the stag-

gered one, but with all the inductors connecting to the upper ground plane. The capacitor

finger width, length, spacing, number of pairs and the meander-line width and number of

turns are kept the same to maintain the unit cell capacitance and inductance. In order

to avoid the inductors overlapping with each other, the interdigitated capacitor spines are

widened so the unit cell size will increase to 66 µm, which results in the total length of a 42

cell design being increased by 252 µm. With all other conditions and parameters unchanged,

we simulate this geometry in Sonnet to find the S21 spectrum.
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ory curve, experimental results from ADR measurements, S21(f) measurement done with
LSM, Sonnet simulation of the staggered inductor configuration and non-staggered inductor
configuration. The inset is a zoomed-in plot of the low-frequency end of the spectrum.

As shown in Fig. 8.9 and Fig. 8.10, the staggered and non-staggered configurations have

some significant differences. First, the cut-off is 2 GHz higher for the non-staggered con-

figuration compared to the staggered inductor layout. Second, the non-staggered spectrum

exhibits the highest mode density just above ωIR, as expected from the theoretical prediction

[Eq. 4.11)]. Third, dispersion of the modes for the non-staggered layout comes quite close

to the dependence given by the theoretical expression over most of the range. Fourth, the

gap at the high-frequency end of the spectrum appears at a significantly lower frequency

compared to the staggered inductor case. These phenomena suggest that both geometries

have extra loading effects for the high-n, low-f modes, which deviate the dispersion from

the theory curve. The fact that the non-staggered configuration has condensed modes at

the low frequency end while all the measurements and simulation of the staggered one do

not indicate that the deviation from the theory curve of our staggered design is mainly a

geometry issue. Some in-cell dynamics that are not captured by the LHTL theory discussed

in Chapter 4 in the staggered LHTL could prevent modes being too close to each other at

low frequency.
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Figure 8.11: Coupling loss vs. mode number from Fig. 7.4 with the results from the Sonnet
simulations of the non-staggered inductor configuration included.

In addition to comparing the spectra and dispersion relations, it is also illuminating to

compare the coupling loss for the different inductor configurations. As shown in Fig. 8.11,

when we place the inductors all on one side for the non-staggered layout, the coupling loss

for the low frequency peaks match closely to the theory curve and pure lumped-element

simulation from AWR. On the other hand, for the staggered inductor configuration, the

coupling loss is enhanced at low frequency and high n. Overall, the effect of staggering

the inductors is very complicated. At low frequency end, the not-staggered configuration

matches the LHTL better while at high frequency, the staggered one is closer to the LHTL.

8.2.6 Effect of imperfect grounding

In the measurement setup, the chip was grounded via aluminum wire bonds to the sample

holder’s grounding edge. There were also jumper wires across the left-handed line structure

and CPW regions to ensure the ground plane was as close to a uniform equipotential as

possible. However, the wire bonds themselves have self inductance, which can limit the

performance of the ground plane across the entire area of the chip. Here, we simulate the

imperfect grounding condition using Sonnet to see how much it will affect the spectrum and
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coupling quality factor.

The typical grounding setup in Sonnet involves defining a grounding box and attach the

metal layer boundaries to the sides of the grounding box. The grounding box and the drawing

are normally both rectangular to fit exactly to each other, thus the metal layer is perfectly

grounded. Here, we study four different grounding conditions. First is the conventional setup

as described before. This is by default a perfect grounding condition so we call it “grounded

”. Second, we make the grounding box bigger than the metal layer area and then use twelve

6× 200 µm2 metal strips to connect the device area to the grounding box to mimic the use

of wire bonds to establish the ground connections on the experimental devices. This setup

is referred to as “12 bonds”. Although the actual wire bonds would have dimensions around

32 × 500 µm2, we designed the strips with this size to enhance the effects of an imperfect

grounding configuration. Third, we reduce the number of the metal strips to 3 to create an

even worse grounding configuration and we refer to this as “3 bonds”. Fourth, we completely

separate the metal and the grounding box so that there is no dc path to ground at all and we

refer to this configuration as “floating”. These four conditions are marked as “Grounded”,

“12 bonds”, “3 bonds” and “Floating” in the Fig. 8.12 respectively.

As shown in Fig. 8.12, they do have some systematic differences. The plot in Fig. 8.12(a)

indicates that the coupling loss increases as the grounding condition becoming progressively

worse from perfectly grounded to floating. The effect is especially strong for the first few

low frequency modes. This means that if the sample is not well grounded, the first few low

frequency resonance peaks would get broader due to higher coupling loss. On the right, we

can see that the bad grounding conditions would push the low frequency modes to even lower

frequencies. This effect can explain the frequency deviation from the theory curve. And it

is clear that with worse grounding, the frequency shift is bigger. The imperfect grounding

effect becomes weaker as the frequency goes higher. After about 10 modes counting from

low frequency end, the grounding condition effect becomes hard to notice.

Frequency shifts due to the grounding issues are also found in the LSM experiments.
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Figure 8.12: (Color online) We have simulated four different grounding conditions in Sonnet
as discussed in the section 8.2.6. (a) The coupling losses for these four different conditions
extracted using Eq. (7.1). (b) The dispersion of these four conditions. It’s clear that the
imperfectness in the grounding could increase the coupling loss and push the low frequency
modes to even lower frequencies.

LSM requires a laser beam shinning on the sample, so the jumper wires across the LHTL

region have to be removed. This will make the ground planes on the two sides of the LHTL

have possible imbalanced potential (which is not easy to simulate in Sonnet). By comparing

the S21 spectrum before and after removing the wires, we find the first few peaks are all

lower than the measurement without removing the jumper wires shown in Fig. 8.10. The

above discussion shows that the grounding condition of the sample is very critical for getting

a well behaved left-handed transmission line resonator.
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Chapter 9

Ongoing and future work:

Metamaterial resonator coupled to a

transmon qubit

One direct and exciting application of the metamaterial resonator is to realize a high-density

spectrum of modes coupled to qubits. As introduced in the Chap. 1, multi-mode coupling

and entanglement is always an interesting and fascinating topic in cQED and even in the

entire quantum information processing area. The metamaterial resonator provides us a

possible way of engineering a high-density spectrum in the GHz range with limited chip area

requirement. It also has an IR-cutoff, so the flux-tunable transmon qubit can be prepared

at a certain state without strongly interacting with the metamaterial modes. Based on all

the above benefits and some other advantages over the traditional CPW type resonator, the

metamaterial resonator is a very promising cavity candidate for multi-mode coupling to a

qubit.

In conventional cQED, the transmon qubit is normally capacitively coupled to the voltage

anti-node of the transmission line resonator. The open-ended boundary condition would

make sure the voltage anti-node is at the end of the transmission line for all the possible
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Figure 9.1: The schematic of a transmon qubit coupled near the voltage antinode of the RH
part of a hybrid transmission line resonator. The qubit is drawn to be asymmetric for a
general case.

resonance modes. Thus, if the coupling strength of the qubit to the cavity is stronger than

the mode spacing, the qubit would automatically couple to multiple modes of the cavity at

the same time, like in Ref. [112] where an extremely long CPW resonator with a quite low

fundamental resonance was used for that purpose. As discussed in Chapter 5 and 8, unlike

the CPW resonator, there’s no universal voltage or current anti-node for all the modes in

the metamaterial resonator for the qubit to couple. To solve this problem, Daniel Egger

and Frank Wilhelm from Saarland University proposed a novel approach: instead of using

only a LHTL resonator, one can couple a continuous RHTL like a CPW to one end of the

LHTL to form a hybrid transmission line and apply open-circuit boundary condition to this

TL to form a hybrid cavity [3]. The two directly coupled transmission lines should have the

same impedance to avoid impedance mismatch. Shown in Fig. 9.2, the hybrid cavity would

still have a high density of peaks and IR-cutoff at the low-frequency band edge, behaving

similarly to a LHTL, while the voltage spatial distribution of the RH part would remain

almost the same for the modes that are close in frequency. Thus, coupling a qubit to the

end of the RH part would ensure the qubit being coupled to the voltage anti-nodes of the

entire hybrid cavity.

The conventional cQED physics also applies to the hybrid cavity-qubit system. A qubit

described by the Pauli matrices σ̂x/z coupled to the hybrid cavity with coupling strength gn
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Figure 9.2: From Egger and Wilhelm 2013–The standing wave patterns of the first three
modes of a hybrid transmission line cavity counting from low frequency end. Image taken
from Ref. [3]. The LHTL part has 200 unit cell measuring 100µm each. ωIR/2π = 4 GHz.
The RHTL part is 3 cm long with Cr = 1667 fF/µm and Lr = 4167 pH/µm. It’s clear that
the voltage standing wave patterns in the RH part are almost the same for the first three
modes of the hybrid cavity.

for mode n would have the Hamiltonian of

Ĥ/~ = ωqσ̂z/2 +
∑
n

ωnâ
†
nân +

∑
n

gnσ̂x
(
â†n + ân

)
, (9.1)

where ωn is the frequency of mode n and â†n (ân) is the creation (annihilation) operator for

that mode [3]. If the qubit is coupled to the cavity, at the degeneracy point where the qubit

frequency is very close to the cavity mode frequency, a vacuum Rabi avoided crossing of

2g is expected [74]. We designed and fabricated a hybrid cavity coupled to a flux-tunable

transmon qubit and measured the transmission |S21(f)| as a function of the qubit flux bias.

9.1 Transmon qubit

Here we briefly discuss the transmon qubit. Ideally, a qubit is a quantum two-level system. In

cQED, typically the ground state and the first excited state of a superconducting nonlinear

quantum LC circuit form the qubit basis states. The transmon qubit is a capacitively
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shunted nonlinear inductance, which is typically coupled to a transmission line cavity for

readout and coupling to other qubits [12, 113]. The nonlinearity comes from the low-loss

nonlinear inductor formed from a Josephson junction [71]. The junction consists of two

superconducting electrodes that are separated by a thin insulating barrier that allows a

supercurrent of Cooper pairs to tunnel across the barrier where the current depends on the

phase difference φ between the superconducting wavefunctions on either side of the barrier:

I = I0 sinφ, where I0 is the critical current of the junction [97]. This is called the Josephson

effect and it results in the junction behaving like a nonlinear inductance:

LJ =
Φ0

2πI0 cosφ
, (9.2)

where Φ0 ≡ h/2e is the magnetic flux quantum [74]. The characteristic energy scale for a

junction is the Josephson energy EJ [74]:

EJ = I0Φ0/2π. (9.3)

In our case, a configuration of using two junctions in a superconducting loop to make a

SQUID allows for EJ to be tuned periodically with magnetic flux [114]. A large capacitor

with capacitance CB is connected with the two Josephson junctions in parallel which gives

the qubit total charging energy of

EC = e2/2CΣ, (9.4)

where CΣ = CB + CJ + Cg is the total of the qubit capacitor capacitance, the junction

capacitance, and the capacitance to the environment, respectively [113]. The transmon qubit

is working in the regime where EJ/EC is in the range of ∼ 20−200. The two junctions that

are used in the transmon may have different Josephson energies, EJ1 and EJ2. If we define

the energy ratio as α = EJ1/EJ2 and the total energy as EJΣ = EJ1 + EJ2, we then would
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have the flux-dependent total Josephson energy as:

EJ(Φ) = EJΣ cos

(
πΦ

Φ0

)√
1 + d2 tan2

(
πΦ

Φ0

)
, (9.5)

where d = (α− 1)/(α+ 1) [114]. Thus the qubit frequency can be tuned by an external flux

and have the periodicity of Φ0 [113]. Nowadays, scientists know a lot about the transmon

qubit and its implementation in cQED. So, we could just proceed with substituting the

transmission line cavity with a hybrid cavity and couple it to a transmon qubit to test the

idea of dense spectrum coupling.

9.2 Sample design

The hybrid cavity and qubit require much more space than the metamaterial resonator alone.

So a bigger sample holder which can fit a chip with an active area of 6.25 × 6.25 mm2 is

used. Fig. 9.3(a) shows the circuit diagram illustrating how the qubit is coupled to the

hybrid cavity. Fig. 9.3(b)-(d) shows optical micrograph images of one of these devices. The

hybrid cavity is placed on the top part of the chip. The LH part has the same size and

parameters as our previous metamaterial resonators discussed in the earlier chapters: 42

unit cells of interdigitated capcitors in series and staggered meander-line inductors, and the

input gap capacitor is chosen to be 5 µm wide to provide ∼ 25 fF of coupling capacitance,

which is slightly smaller than the measured metamaterial discussed in the previous chapters

in order to reduce the linewidths of the modes. The right side is coupled to a 5-mm long

CPW with a small interdigitated capacitor of ∼ 25 fF capacitance on the outpet end. A

symmetric (α = 1) flux-tunable transmon qubit is capacitively connected to the CPW near

the output coupling capacitor. The upper sweetspot, where EJ in insensitive to magnetic

flux noise to first order, was designed to be around 9 GHz. The symmetric design allows

for the qubit to tune from its upper sweetspot through all of the metamaterial modes below

it. An additional read-out cavity, which is a conventional CPW resonator designed to have
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the fundamental frequency of 7 GHz, is placed on the bottom of the chip, so we are able

to control and read-out the qubit using normal cQED read-out and control techniques [67].

The sample is made of 90-nm thick Nb on Si, except for the junctions which are made of

Al-AlOx-Al. The fabrication process is described in Chapter 10.

650 μm 40 μm

(a) (b)

(c)

Figure 9.3: The microscopic images of the designed sample: (a) microscopic image of a copy
of the measured sample. The upper right is a 42-cell metamaterial transmission line joined
by a CPW on the right end. A flux-tunable transmon qubit is capacitively coupled to the
CPW near the output end. (b) Zoomed-in image of the transmon. (c) Zoomed-in image of
the Josephson junctions.

9.3 Measurement

The sample is mounted on the cold finger of our dilution refrigerator (DR) and then measured

at ∼ 25 mK. Unlike in the ADR where the base temperature can only be maintained for

a few hours, the DR allows for continuous cooling power at the base temperature for long

measurements. Also, the DR allows for us to use an appropriate level of shielding and filtering

to preserve qubit coherence, while the ADR does not have space for these components. The
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sample box has a flux bobbin, which is a superconducting wire coil, on top to provide an

external magnetic flux to the transmon so we can manipulate the qubit frequency by applying

dc current to the bobbin.
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Figure 9.4: The measured |S21|(f) of the hybrid cavity in the DR. We don’t have a baseline
measured for this sample so the level is not calibrated. Similarly to the metamaterial sample
(Fig. 7.3), the hybrid resonator shows a very high density of modes around 6 GHz, a cut-off
frequency at around 5 GHz and spread-out mode spacings above 7 GHz.

We first measured the transmission |S21(f)| through the hybrid metamaterial resonator

and the result is shown in Fig. 9.4. Although the baseline is uncalibrated, the spectrum

shows a clear distribution of modes that is characteristic of a LHTL. The spectrum has an

IR cut-off at around 5 GHz, a high density of peaks at around 6 GHz and the modes above

7 GHz have increasing mode-spacing with increasing frequency. The highest quality factor

is about 130, 000 at mode 38 and most of the modes have the Q around 20, 000. Thus,

our hybrid cavity is functioning well for us to explore qubit-cavity coupling. Although the

coupling strength is still too small and the mode spacing is still too large for the qubit

to be coupled to multiple modes simultaneously, it still shows a great potential to achieve

multi-mode strong coupling.
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Figure 9.5: Density plot of |S21(f)| with the qubit tuned through different flux bias point.
The color bar on the upper left applies to all the sub-images. (a) Density plot of |S21| over
20 modes that shows avoided crossing up to 9.2 GHz. The centers of each crossing are
joined by a fit to the flux-modulation expected for the tunable transmon in dashed lines.
(b) Zoomed-in plot of qubit frequency crossing with three consecutive metamaterial modes.
(c) Zoomed-in plot of qubit frequency crossing with 9.16 GHz modes, which clearly shows
the qubit upper sweet spot is confined to be around 9.2 GHz
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9.4 Future work

Now we have successfully fabricated a hybrid cavity with a high density of resonance modes

and coupled these modes to a transmon qubit. It’s been the first time reported that a qubit

is coupled to a metamaterial, which has the potential for exploring novel regimes of cQED

and quantum simulation with multi-mode simultaneous coupling. With this sample, there

are still many cQED measurement we can perform, like measuring the qubit relaxation time

T1 through the hybrid cavity at different bias point. There are also multiple improvements

that could be adopted in future devices: decreasing the mode spacing by increasing the total

number of cells; placing all the inductors on the same side to achieve ultra-high density of

modes just above the infrared cutoff; increasing the coupling capacitance from the qubit to

the hybrid cavity to increase the coupling strength.
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Chapter 10

Fabrication process

This chapter is to introduce the fabrication process. The fabrication is partly done at

the Cornell NanoScale Science and Technology Facility (CNF) and the rest is done at our

own fab room in Syracuse. CNF is a national user facility that supports a broad range of

nanoscale science and technology projects by providing state-of-the-art resources coupled

with expert staff support. The metamaterial structures and the ground planes are made of

80 nm thick of Nb deposited on a silicon substrate patterned photo-lithographically. The

Josephson junctions of the transmon qubit are made of a double layer of shadow evaporated

Al-AlOx-Al structure and written using e-beam lithography.

10.1 Photolithography

Photolithography is a process used in microfabrication to pattern parts of a thin film on the

bulk of a substrate. In the metamaterial fabrication case, a lift-off process is used to remove

the unwanted metal. I took a fresh silicon wafer to the CNF cleanroom and used compressed

nitrogen air-blow to clean the wafer making sure the surface is free from dust and as dry as

possible. Then I loaded the wafer into a coating tool called Gamma Automatic Coat-Develop

Tool (GAMMA) to spin the photo resist on top the wafer. I normally spun a first layer of

120 nm thick of DSK-101-312. This kind of resist is called anti-reflective coating (ARC). It
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will prevent the UV light that is used in the next step to reflect from the surface of the wafer

to over-expose the photo-resist. DSK can’t be exposed by the UV light, but it will dissolve

in the developer to create an under-cut for the lift-off process. The GAMMA machine is

designed to spin the resist and do a quick back side clean to ensure the back side of the

wafer is not contaminated. Following that was a 60 second bake at 175 Celsius to reduce

the excess solvent. Then it was cooled back down to room temperature on a chill plate. The

second layer was the working photo resist of 600 nm thick. I normally use a positive resist

(which means the exposed area will be removed after developing) called UV210-0.6. It then

was be baked at 135 Celsius for 60 seconds right after the spinning.

Once the wafer was prepared, I would transfer it to the stepper machine called ASML

300C DUV Stepper (ASML). The machine uses a mask which was prepared using Heidelberg

Mask Writer DWL2000 (Heidelberg) which uses laser to write the GDS pattern onto the

mask. ASML exposed the metamaterial pattern onto the wafer using UV light at 20 mJ/cm2

with -0.2 µm offset of the focus. After the exposure, the wafer was taken back to the GAMMA

for post exposure bake and develop. For the UV210 resist, I would bake it at 135 Celsius

for 90 seconds and develop it using AZ 726 MIF. The benefit of using GAMMA over the

manual spin of resist is that the machine will do the spin, bake, back-side clean and develop

automatically and it normally has a very good uniformity of resist and a very clean backside

of the wafer. It is very important for the ASML. The ASML robot arm and platforms use

vacuum to hold the wafer. If the backside of a wafer is not flat or clean enough, which could

easily happen for manual spinning, it can cause the auto leveling and the focusing to fail

and the wafer could get lost inside the ASML. Besides, the GAMMA can handle multiple

wafers if the sequence of recipe is the same which will save the user a lot of time. Also the

staff at CNF will create the recipe based on the user’s individual needs on the tool which

can also help save time. Once the development was done, I would take the wafer to the Glen

1000 Resist Strip (Glen) for a descum process. It’s done by using reactive-ion etching (RIE)

mode at 100 watts for 120 seconds to reduce any possible resist residual on the exposed area
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of the wafer. The wafer is ready for metal deposition after the descum .

A sputter system in our fabrication room was used for depositing a 80 nm thick film of

Nb. The patterned wafer will be loaded into the system and then covered with sputtered

on the entire exposed surface with desired thickness which was 80 nm in the metamaterial

case. Then I soaked the wafer in acetone to remove the UV210-0.6 photo resist. With the

resist being dissolved in acetone (could be other solvent), the Nb deposited on top would be

removed as well, leaving a desired pattern of metal. The bottom layer of resist which was

DSK-101-312 would not dissolve in acetone so the developer (AZ726) was used after to clean

it off. Another way to remove the DSK after lifting-off was to use heated microposit remover

1165 to clean the wafer. This is a very powerful method, for the 1165 could remove almost

all the possible organic contamination that could build on the wafer during the process. The

use of oxygen plasma to strip off the DSK is also an effective method. The wafer is ready

to go to the next step, electron-beam lithography for tunnel junction patterns writing, after

the cleaning process.

10.2 Electron beam lithography

For writing a pattern such as tunnel area of Josephson junction that is smaller than the

wavelength of the ASML UV light which is 248 nm, e-beam lithography technique is required.

This is an essential tool for nanoscale fabrication. Similarly to photolithography, e-beam

lithography uses e-beam resist and exposes the resist using electrons with certain energy and

then followed by a development step. In the transmon qubit case, I used a first layer of

methyl metharcylate (MMA-MAA copolymer) that was spun onto the wafer at 2500 RPM

and baked at 170 degrees Celsius for 10 minutes to achieve 600 nm thick and a second layer

of polymethyl methacrylate (PMMA) which was spun at 3000 rmp and baked at 170 degrees

Celsius for another 10 minutes to achieve 100 nm thick. The pattern was written using a

tool called JEOL JBX9500FS Electron Beam Lithography System (JEOL 9500). Although
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normally I pattern the entire wafer or a large chunk of the wafer, the sample that is going

be to measured would be processed individually for the metal depostion and lift-off. After

the e-beam writing, in order to fit the chip perfectly in the sample holder, a DISCO Dicing

Saw in CNF which could provide precise cut was used to separate chips from each other.

Substrate

Substrate Substrate

Substrate

SubstrateSubstrate

MMA-MAA

PMMA

Bottom layer
deposition

Top layer
deposition

(a)

(b)

Junction

Figure 10.1: Josephson junction under SEM and double angle evaporation illustration: (a)
A shadow evaporated tunnel junction made of Al-AlOx-Al under SEM; (b) Cross-section
view of the double angle shadow evapartion illustration with top layer of PMMA airbridge
in pink color, the MMA-MAA with under-cut underneath the airbridge, the bottom layer
metal in blue color and the top layer of metal in red color. There’s a oxidation process in
between the two depostions. The overlap area is the juction barrier. The plot is only for
illustration purpose that it’s not in scale and the angle is not meant to be the same with the
actual fabrication. The deposited metal on top of resist is not shown.

To make our junction barrier tunnel, I used a so-called shadow evaporation technique

combined with oxidation in between [115]. In the designed pattern, there are two long

electrode traces facing each other but not touching. Since the PMMA and MMA-MAA layer

reacts to the e-beam differently, I chose a certain energy so that the MMA-MAA was a little
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bit over exposed while the PMMA was not. During the development, the bottom layer of

MMA-MAA between the two electrodes would be removed but the PMMA would stay. This

created an air bridge formed by PMMA. To develop the resist, I used a mixture of methyl

isobutyl ketone (MIBK) with isopropanol (ISO) of 1:3 ratio for 60 seconds then rinsed with

ISO and dried using nitrogen blow. The chip being developed was loaded into a electron-

beam evaporation system in our lab to deposit the aluminum. Before depositing metal, a 13-s

argon ion mill step was performed to remove the surface native oxide on the Nb contact area

as well as any small surface contamination, especially the area where the junction electrodes

were making contact with the bottom niobium layer to ensure the conduction between the

junction electrodes and the qubit capacitor pads. The chip was tilted for 11.5 degrees respect

to the horizontal before starting of the deposition. After the first layer of 65 nm thick of

aluminum was deposited, low pressure 90/10 Ar/O2 mixture was introduced to the deposition

chamber at 40 mTorr for 10 minutes. This would create a layer of AlOx which served as

the insulator on top of the surface of freshly deposited aluminum. After the oxidation, the

oxygen would be pumped out and the chip was tilted to -11.5 degrees to start the second

layer of 35 nm thick of aluminum. This technique of double angle evaporation shown in 10.1

creates an overlap area of metal defined by the thickness and height of the airbridge and

the angle of the evaporation. Also, since the bottom layer is covered with insulator, the

overlap area forms an Al-AlOx-Al Josephson tunnel junction. After the evaporation, the

un-exposed e-beam resist area was stripped off by soaking in dichloromethane (DCM). This

process is similar to the lift-off process described in the photolithography section to remove

all the aluminum while the e-beam resist was resolved in the DCM but leave the junctions

on the chip. The solvent was then cleaned using isopropanol and the chip was ready to be

measured.
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